Search (134 results, page 1 of 7)

  • × language_ss:"e"
  • × type_ss:"m"
  • × year_i:[2010 TO 2020}
  1. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.17
    0.17490667 = product of:
      0.34981334 = sum of:
        0.06792628 = weight(_text_:tagging in 4515) [ClassicSimilarity], result of:
          0.06792628 = score(doc=4515,freq=4.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.32286808 = fieldWeight in 4515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.0790347 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
          0.0790347 = score(doc=4515,freq=58.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.67960584 = fieldWeight in 4515, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.028790962 = weight(_text_:world in 4515) [ClassicSimilarity], result of:
          0.028790962 = score(doc=4515,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.21020076 = fieldWeight in 4515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.038257793 = weight(_text_:wide in 4515) [ClassicSimilarity], result of:
          0.038257793 = score(doc=4515,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.2423071 = fieldWeight in 4515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.0790347 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
          0.0790347 = score(doc=4515,freq=58.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.67960584 = fieldWeight in 4515, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.05676889 = product of:
          0.11353778 = sum of:
            0.11353778 = weight(_text_:2.0 in 4515) [ClassicSimilarity], result of:
              0.11353778 = score(doc=4515,freq=12.0), product of:
                0.20667298 = queryWeight, product of:
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.035634913 = queryNorm
                0.54935956 = fieldWeight in 4515, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.5 = coord(6/12)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    LCSH
    Semantic Web
    Object
    Web 2.0
    RSWK
    Semantic Web
    Social Tagging
    World Wide Web 2.0
    Subject
    Semantic Web
    Social Tagging
    World Wide Web 2.0
    Semantic Web
    Theme
    Semantic Web
  2. Stuart, D.: Web metrics for library and information professionals (2014) 0.14
    0.13979515 = product of:
      0.33550838 = sum of:
        0.09397466 = weight(_text_:web in 2274) [ClassicSimilarity], result of:
          0.09397466 = score(doc=2274,freq=82.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.808072 = fieldWeight in 2274, product of:
              9.055386 = tf(freq=82.0), with freq of:
                82.0 = termFreq=82.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.040716566 = weight(_text_:world in 2274) [ClassicSimilarity], result of:
          0.040716566 = score(doc=2274,freq=8.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.29726875 = fieldWeight in 2274, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.060490884 = weight(_text_:wide in 2274) [ClassicSimilarity], result of:
          0.060490884 = score(doc=2274,freq=10.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.38312116 = fieldWeight in 2274, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.09397466 = weight(_text_:web in 2274) [ClassicSimilarity], result of:
          0.09397466 = score(doc=2274,freq=82.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.808072 = fieldWeight in 2274, product of:
              9.055386 = tf(freq=82.0), with freq of:
                82.0 = termFreq=82.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.046351604 = product of:
          0.09270321 = sum of:
            0.09270321 = weight(_text_:2.0 in 2274) [ClassicSimilarity], result of:
              0.09270321 = score(doc=2274,freq=8.0), product of:
                0.20667298 = queryWeight, product of:
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.035634913 = queryNorm
                0.4485502 = fieldWeight in 2274, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2274)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional. The book will provide a practical introduction to web metrics for a wide range of library and information professionals, from the bibliometrician wanting to demonstrate the wider impact of a researcher's work than can be demonstrated through traditional citations databases, to the reference librarian wanting to measure how successfully they are engaging with their users on Twitter. It will be a valuable tool for anyone who wants to not only understand the impact of content, but demonstrate this impact to others within the organization and beyond.
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.
    RSWK
    Bibliothek / World Wide Web / World Wide Web 2.0 / Analyse / Statistik
    Bibliometrie / Semantic Web / Soziale Software
    Subject
    Bibliothek / World Wide Web / World Wide Web 2.0 / Analyse / Statistik
    Bibliometrie / Semantic Web / Soziale Software
  3. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.14
    0.13948539 = product of:
      0.33476496 = sum of:
        0.096079424 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
          0.096079424 = score(doc=4706,freq=42.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.8261705 = fieldWeight in 4706, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.041129943 = weight(_text_:world in 4706) [ClassicSimilarity], result of:
          0.041129943 = score(doc=4706,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.30028677 = fieldWeight in 4706, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.054653995 = weight(_text_:wide in 4706) [ClassicSimilarity], result of:
          0.054653995 = score(doc=4706,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.34615302 = fieldWeight in 4706, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.096079424 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
          0.096079424 = score(doc=4706,freq=42.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.8261705 = fieldWeight in 4706, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.04682219 = product of:
          0.09364438 = sum of:
            0.09364438 = weight(_text_:2.0 in 4706) [ClassicSimilarity], result of:
              0.09364438 = score(doc=4706,freq=4.0), product of:
                0.20667298 = queryWeight, product of:
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.035634913 = queryNorm
                0.45310414 = fieldWeight in 4706, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  4. Rogers, R.: Digital methods (2013) 0.11
    0.113059394 = product of:
      0.27134255 = sum of:
        0.06275882 = weight(_text_:web in 2354) [ClassicSimilarity], result of:
          0.06275882 = score(doc=2354,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5396523 = fieldWeight in 2354, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.04653322 = weight(_text_:world in 2354) [ClassicSimilarity], result of:
          0.04653322 = score(doc=2354,freq=8.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.33973572 = fieldWeight in 2354, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.06183393 = weight(_text_:wide in 2354) [ClassicSimilarity], result of:
          0.06183393 = score(doc=2354,freq=8.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.3916274 = fieldWeight in 2354, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.06275882 = weight(_text_:web in 2354) [ClassicSimilarity], result of:
          0.06275882 = score(doc=2354,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5396523 = fieldWeight in 2354, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2354)
        0.037457753 = product of:
          0.074915506 = sum of:
            0.074915506 = weight(_text_:2.0 in 2354) [ClassicSimilarity], result of:
              0.074915506 = score(doc=2354,freq=4.0), product of:
                0.20667298 = queryWeight, product of:
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.035634913 = queryNorm
                0.36248332 = fieldWeight in 2354, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2354)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    In Digital Methods, Richard Rogers proposes a methodological outlook for social and cultural scholarly research on the Web that seeks to move Internet research beyond the study of online culture. It is not a toolkit for Internet research, or operating instructions for a software package; it deals with broader questions. How can we study social media to learn something about society rather than about social media use? How can hyperlinks reveal not just the value of a Web site but the politics of association? Rogers proposes repurposing Web-native techniques for research into cultural change and societal conditions. We can learn to reapply such "methods of the medium" as crawling and crowd sourcing, PageRank and similar algorithms, tag clouds and other visualizations; we can learn how they handle hits, likes, tags, date stamps, and other Web-native objects. By "thinking along" with devices and the objects they handle, digital research methods can follow the evolving methods of the medium. Rogers uses this new methodological outlook to examine the findings of inquiries into 9/11 search results, the recognition of climate change skeptics by climate-change-related Web sites, the events surrounding the Srebrenica massacre according to Dutch, Serbian, Bosnian, and Croatian Wikipedias, presidential candidates' social media "friends," and the censorship of the Iranian Web. With Digital Methods, Rogers introduces a new vision and method for Internet research and at the same time applies them to the Web's objects of study, from tiny particles (hyperlinks) to large masses (social media).
    Content
    The end of the virtual : digital methods -- The link and the politics of Web space -- The website as archived object -- Googlization and the inculpable engine -- Search as research -- National Web studies -- Social media and post-demographics -- Wikipedia as cultural reference -- After cyberspace : big data, small data.
    LCSH
    Web search engines
    World Wide Web / Research
    RSWK
    Internet / Recherche / World Wide Web 2.0
    Subject
    Internet / Recherche / World Wide Web 2.0
    Web search engines
    World Wide Web / Research
  5. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.11
    0.11158832 = product of:
      0.26781198 = sum of:
        0.07686354 = weight(_text_:web in 4707) [ClassicSimilarity], result of:
          0.07686354 = score(doc=4707,freq=42.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.6609364 = fieldWeight in 4707, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.032903954 = weight(_text_:world in 4707) [ClassicSimilarity], result of:
          0.032903954 = score(doc=4707,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.24022943 = fieldWeight in 4707, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.043723192 = weight(_text_:wide in 4707) [ClassicSimilarity], result of:
          0.043723192 = score(doc=4707,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.2769224 = fieldWeight in 4707, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.07686354 = weight(_text_:web in 4707) [ClassicSimilarity], result of:
          0.07686354 = score(doc=4707,freq=42.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.6609364 = fieldWeight in 4707, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.037457753 = product of:
          0.074915506 = sum of:
            0.074915506 = weight(_text_:2.0 in 4707) [ClassicSimilarity], result of:
              0.074915506 = score(doc=4707,freq=4.0), product of:
                0.20667298 = queryWeight, product of:
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.035634913 = queryNorm
                0.36248332 = fieldWeight in 4707, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.799733 = idf(docFreq=363, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  6. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.11
    0.1093985 = product of:
      0.2625564 = sum of:
        0.06656578 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.06656578 = score(doc=987,freq=14.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.049355935 = weight(_text_:world in 987) [ClassicSimilarity], result of:
          0.049355935 = score(doc=987,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.36034414 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.06558479 = weight(_text_:wide in 987) [ClassicSimilarity], result of:
          0.06558479 = score(doc=987,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.4153836 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.06656578 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.06656578 = score(doc=987,freq=14.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.014484116 = product of:
          0.028968232 = sum of:
            0.028968232 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.028968232 = score(doc=987,freq=2.0), product of:
                0.12478739 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035634913 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    LCSH
    Semantic Web
    World Wide Web / Subject access
    RSWK
    Semantic Web
    Subject
    Semantic Web
    World Wide Web / Subject access
    Semantic Web
  7. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.07
    0.0733597 = product of:
      0.22007908 = sum of:
        0.08233908 = weight(_text_:tagging in 3197) [ClassicSimilarity], result of:
          0.08233908 = score(doc=3197,freq=2.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.39137518 = fieldWeight in 3197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.06162794 = weight(_text_:web in 3197) [ClassicSimilarity], result of:
          0.06162794 = score(doc=3197,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5299281 = fieldWeight in 3197, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.06162794 = weight(_text_:web in 3197) [ClassicSimilarity], result of:
          0.06162794 = score(doc=3197,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5299281 = fieldWeight in 3197, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.014484116 = product of:
          0.028968232 = sum of:
            0.028968232 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.028968232 = score(doc=3197,freq=2.0), product of:
                0.12478739 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035634913 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.33333334 = coord(4/12)
    
    Abstract
    Indexing consists of both novel and more traditional techniques. Cutting-edge indexing techniques, such as automatic indexing, ontologies, and topic maps, were developed independently of older techniques such as thesauri, but it is now recognized that these older methods also hold expertise. Indexing describes various traditional and novel indexing techniques, giving information professionals and students of library and information sciences a broad and comprehensible introduction to indexing. This title consists of twelve chapters: an Introduction to subject readings and theasauri; Automatic indexing versus manual indexing; Techniques applied in automatic indexing of text material; Automatic indexing of images; The black art of indexing moving images; Automatic indexing of music; Taxonomies and ontologies; Metadata formats and indexing; Tagging; Topic maps; Indexing the web; and The Semantic Web.
    Date
    24. 8.2016 14:03:22
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Theme
    Semantic Web
  8. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.07
    0.07018908 = product of:
      0.1684538 = sum of:
        0.04108529 = weight(_text_:web in 168) [ClassicSimilarity], result of:
          0.04108529 = score(doc=168,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.35328537 = fieldWeight in 168, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.032903954 = weight(_text_:world in 168) [ClassicSimilarity], result of:
          0.032903954 = score(doc=168,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.24022943 = fieldWeight in 168, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.043723192 = weight(_text_:wide in 168) [ClassicSimilarity], result of:
          0.043723192 = score(doc=168,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.2769224 = fieldWeight in 168, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.04108529 = weight(_text_:web in 168) [ClassicSimilarity], result of:
          0.04108529 = score(doc=168,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.35328537 = fieldWeight in 168, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.009656077 = product of:
          0.019312155 = sum of:
            0.019312155 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.019312155 = score(doc=168,freq=2.0), product of:
                0.12478739 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035634913 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
    LCSH
    World wide web
    RSWK
    Datenintegration / Informationssystem / Matching / Ontologie <Wissensverarbeitung> / Schema <Informatik> / Semantic Web
    Subject
    Datenintegration / Informationssystem / Matching / Ontologie <Wissensverarbeitung> / Schema <Informatik> / Semantic Web
    World wide web
  9. Shiri, A.: Powering search : the role of thesauri in new information environments (2012) 0.07
    0.06736527 = product of:
      0.20209579 = sum of:
        0.043577533 = weight(_text_:web in 1322) [ClassicSimilarity], result of:
          0.043577533 = score(doc=1322,freq=6.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.37471575 = fieldWeight in 1322, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1322)
        0.049355935 = weight(_text_:world in 1322) [ClassicSimilarity], result of:
          0.049355935 = score(doc=1322,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.36034414 = fieldWeight in 1322, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=1322)
        0.06558479 = weight(_text_:wide in 1322) [ClassicSimilarity], result of:
          0.06558479 = score(doc=1322,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.4153836 = fieldWeight in 1322, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1322)
        0.043577533 = weight(_text_:web in 1322) [ClassicSimilarity], result of:
          0.043577533 = score(doc=1322,freq=6.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.37471575 = fieldWeight in 1322, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1322)
      0.33333334 = coord(4/12)
    
    Content
    Thesauri : introduction and recent developments -- Thesauri in interactive information retrieval -- User-centered approach to the evaluation of thesauri : query formulation and expansion -- Thesauri in web-based search systems -- Thesaurus-based search and browsing functionalities in new thesaurus construction standards -- Design of search user interfaces for thesauri -- Design of user interfaces for multilingual and meta-thesauri -- User-centered evaluation of thesaurus-enhanced search user interfaces -- Guidelines for the design of thesaurus-enhanced search user interfaces -- Current trends and developments.
    LCSH
    World Wide Web
    Subject
    World Wide Web
  10. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.07
    0.06585966 = product of:
      0.19757898 = sum of:
        0.060475912 = weight(_text_:web in 354) [ClassicSimilarity], result of:
          0.060475912 = score(doc=354,freq=26.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.520022 = fieldWeight in 354, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.032903954 = weight(_text_:world in 354) [ClassicSimilarity], result of:
          0.032903954 = score(doc=354,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.24022943 = fieldWeight in 354, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.043723192 = weight(_text_:wide in 354) [ClassicSimilarity], result of:
          0.043723192 = score(doc=354,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.2769224 = fieldWeight in 354, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.060475912 = weight(_text_:web in 354) [ClassicSimilarity], result of:
          0.060475912 = score(doc=354,freq=26.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.520022 = fieldWeight in 354, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.33333334 = coord(4/12)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
    Content
    Inhalt: 1. Introduction 2. Association Rules and Sequential Patterns 3. Supervised Learning 4. Unsupervised Learning 5. Partially Supervised Learning 6. Information Retrieval and Web Search 7. Social Network Analysis 8. Web Crawling 9. Structured Data Extraction: Wrapper Generation 10. Information Integration
    RSWK
    World Wide Web / Data Mining
    Subject
    World Wide Web / Data Mining
  11. Next generation search engines : advanced models for information retrieval (2012) 0.06
    0.064427115 = product of:
      0.15462509 = sum of:
        0.034307953 = weight(_text_:tagging in 357) [ClassicSimilarity], result of:
          0.034307953 = score(doc=357,freq=2.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.163073 = fieldWeight in 357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.03922426 = weight(_text_:web in 357) [ClassicSimilarity], result of:
          0.03922426 = score(doc=357,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.3372827 = fieldWeight in 357, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.014541632 = weight(_text_:world in 357) [ClassicSimilarity], result of:
          0.014541632 = score(doc=357,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.10616741 = fieldWeight in 357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.027326997 = weight(_text_:wide in 357) [ClassicSimilarity], result of:
          0.027326997 = score(doc=357,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.17307651 = fieldWeight in 357, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.03922426 = weight(_text_:web in 357) [ClassicSimilarity], result of:
          0.03922426 = score(doc=357,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.3372827 = fieldWeight in 357, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.41666666 = coord(5/12)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
  12. Bizer, C.; Mendes, P.N.; Jentzsch, A.: Topology of the Web of Data (2012) 0.06
    0.064165756 = product of:
      0.19249727 = sum of:
        0.06915685 = weight(_text_:web in 425) [ClassicSimilarity], result of:
          0.06915685 = score(doc=425,freq=34.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.59466785 = fieldWeight in 425, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=425)
        0.02326661 = weight(_text_:world in 425) [ClassicSimilarity], result of:
          0.02326661 = score(doc=425,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.16986786 = fieldWeight in 425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=425)
        0.030916965 = weight(_text_:wide in 425) [ClassicSimilarity], result of:
          0.030916965 = score(doc=425,freq=2.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.1958137 = fieldWeight in 425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=425)
        0.06915685 = weight(_text_:web in 425) [ClassicSimilarity], result of:
          0.06915685 = score(doc=425,freq=34.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.59466785 = fieldWeight in 425, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=425)
      0.33333334 = coord(4/12)
    
    Abstract
    The degree of structure of Web content is the determining factor for the types of functionality that search engines can provide. The more well structured the Web content is, the easier it is for search engines to understand Web content and provide advanced functionality, such as faceted filtering or the aggregation of content from multiple Web sites, based on this understanding. Today, most Web sites are generated from structured data that is stored in relational databases. Thus, it does not require too much extra effort for Web sites to publish this structured data directly on the Web in addition to HTML pages, and thus help search engines to understand Web content and provide improved functionality. An early approach to realize this idea and help search engines to understand Web content is Microformats, a technique for markingup structured data about specific types on entities-such as tags, blog posts, people, or reviews-within HTML pages. As Microformats are focused on a few entity types, the World Wide Web Consortium (W3C) started in 2004 to standardize RDFa as an alternative, more generic language for embedding any type of data into HTML pages. Today, major search engines such as Google, Yahoo, and Bing extract Microformat and RDFa data describing products, reviews, persons, events, and recipes from Web pages and use the extracted data to improve the user's search experience. The search engines have started to aggregate structured data from different Web sites and augment their search results with these aggregated information units in the form of rich snippets which combine, for instance, data This chapter gives an overview of the topology of the Web of Data that has been created by publishing data on the Web using the microformats RDFa, Microdata and Linked Data publishing techniques.
    Source
    Semantic search over the Web. Eds.: R. De Virgilio, et al
    Theme
    Semantic Web
  13. Bizer, C.; Heath, T.: Linked Data : evolving the web into a global data space (2011) 0.06
    0.061368894 = product of:
      0.18410668 = sum of:
        0.06496155 = weight(_text_:web in 4725) [ClassicSimilarity], result of:
          0.06496155 = score(doc=4725,freq=30.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5585932 = fieldWeight in 4725, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4725)
        0.02326661 = weight(_text_:world in 4725) [ClassicSimilarity], result of:
          0.02326661 = score(doc=4725,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.16986786 = fieldWeight in 4725, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=4725)
        0.030916965 = weight(_text_:wide in 4725) [ClassicSimilarity], result of:
          0.030916965 = score(doc=4725,freq=2.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.1958137 = fieldWeight in 4725, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4725)
        0.06496155 = weight(_text_:web in 4725) [ClassicSimilarity], result of:
          0.06496155 = score(doc=4725,freq=30.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5585932 = fieldWeight in 4725, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4725)
      0.33333334 = coord(4/12)
    
    Abstract
    The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study.
    Content
    Inhalt: Introduction - Principles ofLinked Data - The Web ofData - Linked Data Design Considerations - Linked Data Design Considerations - Consuming Linked Data - Summary and Outlook Vgl.: http://linkeddatabook.com/book.
    RSWK
    Semantic Web / Forschungsergebnis / Forschung / Daten / Hyperlink
    Series
    Synthesis lectures on the semantic web: theory and technology ; 1
    Subject
    Semantic Web / Forschungsergebnis / Forschung / Daten / Hyperlink
    Theme
    Semantic Web
  14. Weiand, K.; Hartl, A.; Hausmann, S.; Furche, T.; Bry, F.: Keyword-based search over semantic data (2012) 0.06
    0.056378234 = product of:
      0.22551294 = sum of:
        0.068615906 = weight(_text_:tagging in 432) [ClassicSimilarity], result of:
          0.068615906 = score(doc=432,freq=2.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.326146 = fieldWeight in 432, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.0390625 = fieldNorm(doc=432)
        0.07844852 = weight(_text_:web in 432) [ClassicSimilarity], result of:
          0.07844852 = score(doc=432,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.6745654 = fieldWeight in 432, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=432)
        0.07844852 = weight(_text_:web in 432) [ClassicSimilarity], result of:
          0.07844852 = score(doc=432,freq=28.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.6745654 = fieldWeight in 432, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=432)
      0.25 = coord(3/12)
    
    Abstract
    For a long while, the creation of Web content required at least basic knowledge of Web technologies, meaning that for many Web users, the Web was de facto a read-only medium. This changed with the arrival of the "social Web," when Web applications started to allow users to publish Web content without technological expertise. Here, content creation is often an inclusive, iterative, and interactive process. Examples of social Web applications include blogs, social networking sites, as well as many specialized applications, for example, for saving and sharing bookmarks and publishing photos. Social semantic Web applications are social Web applications in which knowledge is expressed not only in the form of text and multimedia but also through informal to formal annotations that describe, reflect, and enhance the content. These annotations often take the shape of RDF graphs backed by ontologies, but less formal annotations such as free-form tags or tags from a controlled vocabulary may also be available. Wikis are one example of social Web applications for collecting and sharing knowledge. They allow users to easily create and edit documents, so-called wiki pages, using a Web browser. The pages in a wiki are often heavily interlinked, which makes it easy to find related information and browse the content.
    Source
    Semantic search over the Web. Eds.: R. De Virgilio, et al
    Theme
    Semantic Web
    Social tagging
  15. Web search engine research (2012) 0.06
    0.05506896 = product of:
      0.22027583 = sum of:
        0.06162794 = weight(_text_:web in 478) [ClassicSimilarity], result of:
          0.06162794 = score(doc=478,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5299281 = fieldWeight in 478, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
        0.097019956 = weight(_text_:log in 478) [ClassicSimilarity], result of:
          0.097019956 = score(doc=478,freq=2.0), product of:
            0.22837062 = queryWeight, product of:
              6.4086204 = idf(docFreq=197, maxDocs=44218)
              0.035634913 = queryNorm
            0.42483553 = fieldWeight in 478, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.4086204 = idf(docFreq=197, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
        0.06162794 = weight(_text_:web in 478) [ClassicSimilarity], result of:
          0.06162794 = score(doc=478,freq=12.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.5299281 = fieldWeight in 478, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
      0.25 = coord(3/12)
    
    Abstract
    "Web Search Engine Research", edited by Dirk Lewandowski, provides an understanding of Web search engines from the unique perspective of Library and Information Science. The book explores a range of topics including retrieval effectiveness, user satisfaction, the evaluation of search interfaces, the impact of search on society, reliability of search results, query log analysis, user guidance in the search process, and the influence of search engine optimization (SEO) on results quality. While research in computer science has mainly focused on technical aspects of search engines, LIS research is centred on users' behaviour when using search engines and how this interaction can be evaluated. LIS research provides a unique perspective in intermediating between the technical aspects, user aspects and their impact on their role in knowledge acquisition. This book is directly relevant to researchers and practitioners in library and information science, computer science, including Web researchers.
    LCSH
    Web search engines
    Subject
    Web search engines
  16. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.05
    0.054981086 = product of:
      0.21992435 = sum of:
        0.06953719 = weight(_text_:web in 3934) [ClassicSimilarity], result of:
          0.06953719 = score(doc=3934,freq=22.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.59793836 = fieldWeight in 3934, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.08084996 = weight(_text_:log in 3934) [ClassicSimilarity], result of:
          0.08084996 = score(doc=3934,freq=2.0), product of:
            0.22837062 = queryWeight, product of:
              6.4086204 = idf(docFreq=197, maxDocs=44218)
              0.035634913 = queryNorm
            0.3540296 = fieldWeight in 3934, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.4086204 = idf(docFreq=197, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.06953719 = weight(_text_:web in 3934) [ClassicSimilarity], result of:
          0.06953719 = score(doc=3934,freq=22.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.59793836 = fieldWeight in 3934, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.25 = coord(3/12)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
    RSWK
    Ontologie <Wissensverarbeitung> / Semantic Web
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
    Subject
    Ontologie <Wissensverarbeitung> / Semantic Web
    Theme
    Semantic Web
  17. Social tagging in a linked data environment. Edited by Diane Rasmussen Pennington and Louise F. Spiteri. London, UK: Facet Publishing, 2018. 240 pp. £74.95 (paperback). (ISBN 9781783303380) (2019) 0.05
    0.05250161 = product of:
      0.21000645 = sum of:
        0.16807395 = weight(_text_:tagging in 101) [ClassicSimilarity], result of:
          0.16807395 = score(doc=101,freq=12.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.79889125 = fieldWeight in 101, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.0390625 = fieldNorm(doc=101)
        0.02096625 = weight(_text_:web in 101) [ClassicSimilarity], result of:
          0.02096625 = score(doc=101,freq=2.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.18028519 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=101)
        0.02096625 = weight(_text_:web in 101) [ClassicSimilarity], result of:
          0.02096625 = score(doc=101,freq=2.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.18028519 = fieldWeight in 101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=101)
      0.25 = coord(3/12)
    
    Abstract
    Social tagging, hashtags, and geotags are used across a variety of platforms (Twitter, Facebook, Tumblr, WordPress, Instagram) in different countries and cultures. This book, representing researchers and practitioners across different information professions, explores how social tags can link content across a variety of environments. Most studies of social tagging have tended to focus on applications like library catalogs, blogs, and social bookmarking sites. This book, in setting out a theoretical background and the use of a series of case studies, explores the role of hashtags as a form of linked data?without the complex implementation of RDF and other Semantic Web technologies.
    RSWK
    Linked Data / Social Tagging
    Subject
    Linked Data / Social Tagging
    Theme
    Social tagging
  18. Wright, A.: Cataloging the world : Paul Otlet and the birth of the information age (2014) 0.05
    0.04897524 = product of:
      0.14692572 = sum of:
        0.028129177 = weight(_text_:web in 2788) [ClassicSimilarity], result of:
          0.028129177 = score(doc=2788,freq=10.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.24187797 = fieldWeight in 2788, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2788)
        0.057874963 = weight(_text_:world in 2788) [ClassicSimilarity], result of:
          0.057874963 = score(doc=2788,freq=22.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.42254096 = fieldWeight in 2788, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2788)
        0.032792397 = weight(_text_:wide in 2788) [ClassicSimilarity], result of:
          0.032792397 = score(doc=2788,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.2076918 = fieldWeight in 2788, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2788)
        0.028129177 = weight(_text_:web in 2788) [ClassicSimilarity], result of:
          0.028129177 = score(doc=2788,freq=10.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.24187797 = fieldWeight in 2788, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2788)
      0.33333334 = coord(4/12)
    
    Abstract
    In 1934, a Belgian entrepreneur named Paul Otlet sketched out plans for a worldwide network of computers-or "electric telescopes," as he called them - that would allow people anywhere in the world to search and browse through millions of books, newspapers, photographs, films and sound recordings, all linked together in what he termed a reseau mondial: a "worldwide web." Today, Otlet and his visionary proto-Internet have been all but forgotten, thanks to a series of historical misfortunes - not least of which involved the Nazis marching into Brussels and destroying most of his life's work. In the years since Otlet's death, however, the world has witnessed the emergence of a global network that has proved him right about the possibilities - and the perils - of networked information. In Cataloging the World, Alex Wright brings to light the forgotten genius of Paul Otlet, an introverted librarian who harbored a bookworm's dream to organize all the world's information. Recognizing the limitations of traditional libraries and archives, Otlet began to imagine a radically new way of organizing information, and undertook his life's great work: a universal bibliography of all the world's published knowledge that ultimately totaled more than 12 million individual entries. That effort eventually evolved into the Mundaneum, a vast "city of knowledge" that opened its doors to the public in 1921 to widespread attention. Like many ambitious dreams, however, Otlet's eventually faltered, a victim to technological constraints and political upheaval in Europe on the eve of World War II. Wright tells not just the story of a failed entrepreneur, but the story of a powerful idea - the dream of universal knowledge - that has captivated humankind since before the great Library at Alexandria. Cataloging the World explores this story through the prism of today's digital age, considering the intellectual challenge and tantalizing vision of Otlet's digital universe that in some ways seems far more sophisticated than the Web as we know it today.
    The dream of universal knowledge hardly started with the digital age. From the archives of Sumeria to the Library of Alexandria, humanity has long wrestled with information overload and management of intellectual output. Revived during the Renaissance and picking up pace in the Enlightenment, the dream grew and by the late nineteenth century was embraced by a number of visionaries who felt that at long last it was within their grasp. Among them, Paul Otlet stands out. A librarian by training, he worked at expanding the potential of the catalogue card -- the world's first information chip. From there followed universal libraries and reading rooms, connecting his native Belgium to the world -- by means of vast collections of cards that brought together everything that had ever been put to paper. Recognizing that the rapid acceleration of technology was transforming the world's intellectual landscape, Otlet devoted himself to creating a universal bibliography of all published knowledge. Ultimately totaling more than 12 million individual entries, it would evolve into the Mundaneum, a vast "city of knowledge" that opened its doors to the public in 1921. By 1934, Otlet had drawn up plans for a network of "electric telescopes" that would allow people everywhere to search through books, newspapers, photographs, and recordings, all linked together in what he termed a réseau mondial: a worldwide web. It all seemed possible, almost until the moment when the Nazis marched into Brussels and carted it all away. In Cataloging the World, Alex Wright places Otlet in the long continuum of visionaries and pioneers who have dreamed of unifying the world's knowledge, from H.G. Wells and Melvil Dewey to Ted Nelson and Steve Jobs. And while history has passed Otlet by, Wright shows that his legacy persists in today's networked age, where Internet corporations like Google and Twitter play much the same role that Otlet envisioned for the Mundaneum -- as the gathering and distribution channels for the world's intellectual output. In this sense, Cataloging the World is more than just the story of a failed entrepreneur; it is an ongoing story of a powerful idea that has captivated humanity from time immemorial, and that continues to inspire many of us in today's digital age.
    LCSH
    World Wide Web / History
    Subject
    World Wide Web / History
  19. Innovations in information retrieval : perspectives for theory and practice (2011) 0.04
    0.038160294 = product of:
      0.15264118 = sum of:
        0.077630036 = weight(_text_:tagging in 1757) [ClassicSimilarity], result of:
          0.077630036 = score(doc=1757,freq=4.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.3689921 = fieldWeight in 1757, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.03125 = fieldNorm(doc=1757)
        0.03750557 = weight(_text_:web in 1757) [ClassicSimilarity], result of:
          0.03750557 = score(doc=1757,freq=10.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.32250395 = fieldWeight in 1757, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1757)
        0.03750557 = weight(_text_:web in 1757) [ClassicSimilarity], result of:
          0.03750557 = score(doc=1757,freq=10.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.32250395 = fieldWeight in 1757, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1757)
      0.25 = coord(3/12)
    
    Abstract
    The advent of new information retrieval (IR) technologies and approaches to storage and retrieval provide communities with previously unheard of opportunities for mass documentation, digitization, and the recording of information in all its forms. This book introduces and contextualizes these developments and looks at supporting research in IR, the debates, theories and issues. Contributed by an international team of experts, each authored chapter provides a snapshot of changes in the field, as well as the importance of developing innovation, creativity and thinking in IR practice and research. Key discussion areas include: browsing in new information environments classification revisited: a web of knowledge approaches to fiction retrieval research music information retrieval research folksonomies, social tagging and information retrieval digital information interaction as semantic navigation assessing web search machines: a webometric approach. The questions raised are of significance to the whole international library and information science community, and this is essential reading for LIS professionals , researchers and students, and for all those interested in the future of IR.
    Content
    Inhalt: Bawden, D.: Encountering on the road to serendip? Browsing in new information environments. - Slavic, A.: Classification revisited: a web of knowledge. - Vernitski, A. u. P. Rafferty: Approaches to fiction retrieval research, from theory to practice? - Inskip, C.: Music information retrieval research. - Peters, I.: Folksonomies, social tagging and information retrieval. - Kopak, R., L. Freund u. H. O'Brien: Digital information interaction as semantic navigation. - Thelwall, M.: Assessing web search engines: a webometric approach
    Footnote
    Rez. in: Mitt VÖB 64(2911) H.3/4, S.547-553 (O. Oberhauser): "Dieser mit 156 Seiten (inklusive Register) relativ schmale Band enthält sieben mit dem Gütesiegel "peer-reviewed" versehene Beiträge namhafter Autoren zu "research fronts" auf dem Gebiet des Information Retrieval (IR) - ein Begriff, der hier durchaus breit verstanden wird. Wie die Herausgeber Allen Foster und Pauline Rafferty - beide aus dem Department of Information Studies an der Aberystwyth University (Wales) - in ihrer Einleitung betonen, sind Theorie und Praxis der Wissensorganisation im Internet- Zeitalter nicht mehr nur die Domäne von Informationswissenschaftlern und Bibliotheksfachleuten, sondern auch von Informatikern, Semantic-Web-Entwicklern und Wissensmanagern aus den verschiedensten Institutionen; neben das wissenschaftliche Interesse am Objektbereich ist nun auch das kommerzielle getreten. Die Verarbeitung von Massendaten, die Beschäftigung mit komplexen Medien und die Erforschung der Möglichkeiten zur Einbeziehung der Rezipienten sind insbesondere die Aspekte, um die es heute geht. ..." Weitere Rez. in: Library review 61(2012) no.3, S.233-235 (G. Macgregor); J. Doc. 69(2013) no.2, S.320-321 (J. Bates)
  20. Handbook of metadata, semantics and ontologies (2014) 0.04
    0.037428986 = product of:
      0.112286955 = sum of:
        0.02905169 = weight(_text_:web in 5134) [ClassicSimilarity], result of:
          0.02905169 = score(doc=5134,freq=6.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.24981049 = fieldWeight in 5134, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.02326661 = weight(_text_:world in 5134) [ClassicSimilarity], result of:
          0.02326661 = score(doc=5134,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.16986786 = fieldWeight in 5134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.030916965 = weight(_text_:wide in 5134) [ClassicSimilarity], result of:
          0.030916965 = score(doc=5134,freq=2.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.1958137 = fieldWeight in 5134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.02905169 = weight(_text_:web in 5134) [ClassicSimilarity], result of:
          0.02905169 = score(doc=5134,freq=6.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.24981049 = fieldWeight in 5134, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
      0.33333334 = coord(4/12)
    
    Abstract
    Metadata research has emerged as a discipline cross-cutting many domains, focused on the provision of distributed descriptions (often called annotations) to Web resources or applications. Such associated descriptions are supposed to serve as a foundation for advanced services in many application areas, including search and location, personalization, federation of repositories and automated delivery of information. Indeed, the Semantic Web is in itself a concrete technological framework for ontology-based metadata. For example, Web-based social networking requires metadata describing people and their interrelations, and large databases with biological information use complex and detailed metadata schemas for more precise and informed search strategies. There is a wide diversity in the languages and idioms used for providing meta-descriptions, from simple structured text in metadata schemas to formal annotations using ontologies, and the technologies for storing, sharing and exploiting meta-descriptions are also diverse and evolve rapidly. In addition, there is a proliferation of schemas and standards related to metadata, resulting in a complex and moving technological landscape - hence, the need for specialized knowledge and skills in this area. The Handbook of Metadata, Semantics and Ontologies is intended as an authoritative reference for students, practitioners and researchers, serving as a roadmap for the variety of metadata schemas and ontologies available in a number of key domain areas, including culture, biology, education, healthcare, engineering and library science.
    Imprint
    Singapore : World Scientific

Types

  • s 45
  • b 1
  • el 1
  • i 1
  • n 1
  • More… Less…

Subjects

Classifications