Search (8 results, page 1 of 1)

  • × language_ss:"e"
  • × type_ss:"r"
  • × year_i:[2000 TO 2010}
  1. Carey, K.; Stringer, R.: ¬The power of nine : a preliminary investigation into navigation strategies for the new library with special reference to disabled people (2000) 0.00
    0.0042065145 = product of:
      0.0294456 = sum of:
        0.0294456 = product of:
          0.0588912 = sum of:
            0.0588912 = weight(_text_:22 in 234) [ClassicSimilarity], result of:
              0.0588912 = score(doc=234,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46428138 = fieldWeight in 234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=234)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Pages
    22 S
  2. Hellweg, H.; Krause, J.; Mandl, T.; Marx, J.; Müller, M.N.O.; Mutschke, P.; Strötgen, R.: Treatment of semantic heterogeneity in information retrieval (2001) 0.00
    0.0034888082 = product of:
      0.024421657 = sum of:
        0.024421657 = product of:
          0.06105414 = sum of:
            0.029295133 = weight(_text_:retrieval in 6560) [ClassicSimilarity], result of:
              0.029295133 = score(doc=6560,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.26736724 = fieldWeight in 6560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6560)
            0.03175901 = weight(_text_:system in 6560) [ClassicSimilarity], result of:
              0.03175901 = score(doc=6560,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.27838376 = fieldWeight in 6560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6560)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Nowadays, users of information services are faced with highly decentralised, heterogeneous document sources with different content analysis. Semantic heterogeneity occurs e.g. when resources using different systems for content description are searched using a simple query system. This report describes several approaches of handling semantic heterogeneity used in projects of the German Social Science Information Centre
  3. Hildebrand, M.; Ossenbruggen, J. van; Hardman, L.: ¬An analysis of search-based user interaction on the Semantic Web (2007) 0.00
    7.9397525E-4 = product of:
      0.0055578267 = sum of:
        0.0055578267 = product of:
          0.027789133 = sum of:
            0.027789133 = weight(_text_:system in 59) [ClassicSimilarity], result of:
              0.027789133 = score(doc=59,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2435858 = fieldWeight in 59, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=59)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Many Semantic Web applications provide access to their resources through text-based search queries, using explicit semantics to improve the search results. This paper provides an analysis of the current state of the art in semantic search, based on 35 existing systems. We identify different types of semantic search features that are used during query construction, the core search process, the presentation of the search results and user feedback on query and results. For each of these, we consider the functionality that the system provides and how this is made available through the user interface.
  4. Sykes, J.: Making solid business decisions through intelligent indexing taxonomies : a white paper prepared for Factiva, Factiva, a Dow Jones and Reuters Company (2003) 0.00
    5.918511E-4 = product of:
      0.0041429573 = sum of:
        0.0041429573 = product of:
          0.020714786 = sum of:
            0.020714786 = weight(_text_:retrieval in 721) [ClassicSimilarity], result of:
              0.020714786 = score(doc=721,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.18905719 = fieldWeight in 721, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=721)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    In 2000, Factiva published "The Value of Indexing," a white paper emphasizing the strategic importance of accurate categorization, based on a robust taxonomy for later retrieval of documents stored in commercial or in-house content repositories. Since that time, there has been resounding agreement between persons who use Web-based systems and those who design these systems that search engines alone are not the answer for effective information retrieval. High-quality categorization is crucial if users are to be able to find the right answers in repositories of articles and documents that are expanding at phenomenal rates. Companies continue to invest in technologies that will help them organize and integrate their content. A March 2002 article in EContent suggests a typical taxonomy implementation usually costs around $100,000. The article also cites a Merrill Lynch study that predicts the market for search and categorization products, now at about $600 million, will more than double by 2005. Classification activities are not new. In the third century B.C., Callimachus of Cyrene managed the ancient Library of Alexandria. To help scholars find items in the collection, he created an index of all the scrolls organized according to a subject taxonomy. Factiva's parent companies, Dow Jones and Reuters, each have more than 20 years of experience with developing taxonomies and painstaking manual categorization processes and also have a solid history with automated categorization techniques. This experience and expertise put Factiva at the leading edge of developing and applying categorization technology today. This paper will update readers about enhancements made to the Factiva Intelligent IndexingT taxonomy. It examines the value these enhancements bring to Factiva's news and business information service, and the value brought to clients who license the Factiva taxonomy as a fundamental component of their own Enterprise Knowledge Architecture. There is a behind-the-scenes-look at how Factiva classifies a huge stream of incoming articles published in a variety of formats and languages. The paper concludes with an overview of new Factiva services and solutions that are designed specifically to help clients improve productivity and make solid business decisions by precisely finding information in their own everexpanding content repositories.
  5. Harken, S.E.: Subject semantic interoperability. Report of the Subcommittee on Semantic Interoperability to the ALCTS Subject Analysis Committee : Final report (2006) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 906) [ClassicSimilarity], result of:
              0.01984938 = score(doc=906,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 906, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=906)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The need for improved semantic in teroperability between and among vocabularies and knowledge organization schemes is undeniable and growing in importance. There is an ever-increasing need to create an environment by which even multiple portals could be accessed via subject metadata using software that is neutral and available ubiquitously or directly to the user, that could be copied by libraries for use in their own environment. In order to develop or improve a knowledge organization system including emerging options in semantic interoperability, scholars and practitioners need to be able to evaluate a wide variety of projects and stay current with the professional literature. Based on its findings, the Subcommittee concludes that the development of a successful subject semantic interoperability project is a long and difficult process. It requires a substantial investment of financial, human and computer resources. The Subcommittee recommends using the information and tools in this report and its appendices to assist in developing a successful project incorporating subject semantic interoperability. Finally the Subcommittee concludes that since this field of endeavor is still relatively young and immature, it is too early to generate a set of Best Practices that could be used in developing a successful project. We are past the theoretical and basic research phase and into the development phase. Even though there are some successful projects in full production, more projects need to reach maturity and much more research needs to be done.
  6. Calhoun, K.: ¬The changing nature of the catalog and its integration with other discovery tools : Prepared for the Library of Congress (2006) 0.00
    4.1850194E-4 = product of:
      0.0029295133 = sum of:
        0.0029295133 = product of:
          0.014647567 = sum of:
            0.014647567 = weight(_text_:retrieval in 5013) [ClassicSimilarity], result of:
              0.014647567 = score(doc=5013,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 5013, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5013)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The destabilizing influences of the Web, widespread ownership of personal computers, and rising computer literacy have created an era of discontinuous change in research libraries a time when the cumulated assets of the past do not guarantee future success. The library catalog is such an asset. Today, a large and growing number of students and scholars routinely bypass library catalogs in favor of other discovery tools, and the catalog represents a shrinking proportion of the universe of scholarly information. The catalog is in decline, its processes and structures are unsustainable, and change needs to be swift. At the same time, books and serials are not dead, and they are not yet digital. Notwithstanding widespread expansion of digitization projects, ubiquitous e-journals, and a market that seems poised to move to e-books, the role of catalog records in discovery and retrieval of the world's library collections seems likely to continue for at least a couple of decades and probably longer. This report, commissioned by the Library of Congress (LC), offers an analysis of the current situation, options for revitalizing research library catalogs, a feasibility assessment, a vision for change, and a blueprint for action. Library decision makers are the primary audience for this report, whose aim is to elicit support, dialogue, collaboration, and movement toward solutions. Readers from the business community, particularly those that directly serve libraries, may find the report helpful for defining research and development efforts. The same is true for readers from membership organizations such as OCLC Online Computer Library Center, the Research Libraries Group, the Association for Research Libraries, the Council on Library and Information Resources, the Coalition for Networked Information, and the Digital Library Federation. Library managers and practitioners from all functional groups are likely to take an interest in the interview findings and in specific actions laid out in the blueprint.
  7. Sykes, J.: ¬The value of indexing : a white paper prepared for Factiva, Factiva, a Dow Jones and Reuters Company (2001) 0.00
    4.1850194E-4 = product of:
      0.0029295133 = sum of:
        0.0029295133 = product of:
          0.014647567 = sum of:
            0.014647567 = weight(_text_:retrieval in 720) [ClassicSimilarity], result of:
              0.014647567 = score(doc=720,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 720, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=720)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Finding particular documents after they have been reviewed and stored has been a challenge since the advent of the printed word. "Findability" is emphatically more important as we deal with information overload in general and with the specific need to quickly find relevant background information to support business decisions in a networked environment. Because time is arguably the most valuable asset in today's economy, information users value tools that help them (1) quickly find the information they are seeking and (2) manage the quantity and quality of information they manipulate and work with on a regular basis. Although the term "indexing" may lack the cachet of some other terms we use to describe current information organization and management concepts, indexing is fundamental to precise information organization and retrieval, especially when dealing with large sets of documents. Power users find great value in using a known, granular indexing language that can surface the most relevant items and filter out items of peripheral or no interest. Web architects and interface designers can likewise take advantage of indexing labels to present only the information meeting certain requirements for users who do not wish to learn the indexing structure or taxonomy. The user finds what is needed while the indexing language is used behind the scenes and is transparent to the user.
  8. Report on the future of bibliographic control : draft for public comment (2007) 0.00
    3.4027512E-4 = product of:
      0.0023819257 = sum of:
        0.0023819257 = product of:
          0.011909628 = sum of:
            0.011909628 = weight(_text_:system in 1271) [ClassicSimilarity], result of:
              0.011909628 = score(doc=1271,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.104393914 = fieldWeight in 1271, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1271)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The future of bibliographic control will be collaborative, decentralized, international in scope, and Web-based. Its realization will occur in cooperation with the private sector, and with the active collaboration of library users. Data will be gathered from multiple sources; change will happen quickly; and bibliographic control will be dynamic, not static. The underlying technology that makes this future possible and necessary-the World Wide Web-is now almost two decades old. Libraries must continue the transition to this future without delay in order to retain their relevance as information providers. The Working Group on the Future of Bibliographic Control encourages the library community to take a thoughtful and coordinated approach to effecting significant changes in bibliographic control. Such an approach will call for leadership that is neither unitary nor centralized. Nor will the responsibility to provide such leadership fall solely to the Library of Congress (LC). That said, the Working Group recognizes that LC plays a unique role in the library community of the United States, and the directions that LC takes have great impact on all libraries. We also recognize that there are many other institutions and organizations that have the expertise and the capacity to play significant roles in the bibliographic future. Wherever possible, those institutions must step forward and take responsibility for assisting with navigating the transition and for playing appropriate ongoing roles after that transition is complete. To achieve the goals set out in this document, we must look beyond individual libraries to a system wide deployment of resources. We must realize efficiencies in order to be able to reallocate resources from certain lower-value components of the bibliographic control ecosystem into other higher-value components of that same ecosystem. The recommendations in this report are directed at a number of parties, indicated either by their common initialism (e.g., "LC" for Library of Congress, "PCC" for Program for Cooperative Cataloging) or by their general category (e.g., "Publishers," "National Libraries"). When the recommendation is addressed to "All," it is intended for the library community as a whole and its close collaborators.