Search (47 results, page 1 of 3)

  • × language_ss:"e"
  • × type_ss:"s"
  • × year_i:[2010 TO 2020}
  1. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.005789892 = product of:
      0.026054513 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 3283) [ClassicSimilarity], result of:
              0.02422117 = score(doc=3283,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.027887857 = score(doc=3283,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Theme
    Semantic Web
  2. Semantic keyword-based search on structured data sources : First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers (2016) 0.01
    0.005167726 = product of:
      0.023254767 = sum of:
        0.011986371 = product of:
          0.023972742 = sum of:
            0.023972742 = weight(_text_:web in 2753) [ClassicSimilarity], result of:
              0.023972742 = score(doc=2753,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.24981049 = fieldWeight in 2753, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2753)
          0.5 = coord(1/2)
        0.011268396 = product of:
          0.022536792 = sum of:
            0.022536792 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
              0.022536792 = score(doc=2753,freq=4.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21886435 = fieldWeight in 2753, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2753)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This book constitutes the thoroughly refereed post-conference proceedings of the First COST Action IC1302 International KEYSTONE Conference on semantic Keyword-based Search on Structured Data Sources, IKC 2015, held in Coimbra, Portugal, in September 2015. The 13 revised full papers, 3 revised short papers, and 2 invited papers were carefully reviewed and selected from 22 initial submissions. The paper topics cover techniques for keyword search, semantic data management, social Web and social media, information retrieval, benchmarking for search on big data.
    Content
    Inhalt: Professional Collaborative Information Seeking: On Traceability and Creative Sensemaking / Nürnberger, Andreas (et al.) - Recommending Web Pages Using Item-Based Collaborative Filtering Approaches / Cadegnani, Sara (et al.) - Processing Keyword Queries Under Access Limitations / Calì, Andrea (et al.) - Balanced Large Scale Knowledge Matching Using LSH Forest / Cochez, Michael (et al.) - Improving css-KNN Classification Performance by Shifts in Training Data / Draszawka, Karol (et al.) - Classification Using Various Machine Learning Methods and Combinations of Key-Phrases and Visual Features / HaCohen-Kerner, Yaakov (et al.) - Mining Workflow Repositories for Improving Fragments Reuse / Harmassi, Mariem (et al.) - AgileDBLP: A Search-Based Mobile Application for Structured Digital Libraries / Ifrim, Claudia (et al.) - Support of Part-Whole Relations in Query Answering / Kozikowski, Piotr (et al.) - Key-Phrases as Means to Estimate Birth and Death Years of Jewish Text Authors / Mughaz, Dror (et al.) - Visualization of Uncertainty in Tag Clouds / Platis, Nikos (et al.) - Multimodal Image Retrieval Based on Keywords and Low-Level Image Features / Pobar, Miran (et al.) - Toward Optimized Multimodal Concept Indexing / Rekabsaz, Navid (et al.) - Semantic URL Analytics to Support Efficient Annotation of Large Scale Web Archives / Souza, Tarcisio (et al.) - Indexing of Textual Databases Based on Lexical Resources: A Case Study for Serbian / Stankovic, Ranka (et al.) - Domain-Specific Modeling: Towards a Food and Drink Gazetteer / Tagarev, Andrey (et al.) - Analysing Entity Context in Multilingual Wikipedia to Support Entity-Centric Retrieval Applications / Zhou, Yiwei (et al.)
    Date
    1. 2.2016 18:25:22
  3. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.00
    0.0044045774 = product of:
      0.039641198 = sum of:
        0.039641198 = product of:
          0.079282396 = sum of:
            0.079282396 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
              0.079282396 = score(doc=4706,freq=42.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.8261705 = fieldWeight in 4706, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  4. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.00
    0.004094072 = product of:
      0.018423324 = sum of:
        0.008563478 = product of:
          0.017126955 = sum of:
            0.017126955 = weight(_text_:web in 1155) [ClassicSimilarity], result of:
              0.017126955 = score(doc=1155,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.17847323 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
        0.009859847 = product of:
          0.019719694 = sum of:
            0.019719694 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
              0.019719694 = score(doc=1155,freq=4.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19150631 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Metadata and semantics are integral to any information system and significant to the sphere of Web data. Research focusing on metadata and semantics is crucial for advancing our understanding and knowledge of metadata; and, more profoundly for being able to effectively discover, use, archive, and repurpose information. In response to this need, researchers are actively examining methods for generating, reusing, and interchanging metadata. Integrated with these developments is research on the application of computational methods, linked data, and data analytics. A growing body of work also targets conceptual and theoretical designs providing foundational frameworks for metadata and semantic applications. There is no doubt that metadata weaves its way into nearly every aspect of our information ecosystem, and there is great motivation for advancing the current state of metadata and semantics. To this end, it is vital that scholars and practitioners convene and share their work.
    Date
    17.12.2013 12:51:22
    Theme
    Semantic Web
  5. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.00
    0.003523662 = product of:
      0.031712957 = sum of:
        0.031712957 = product of:
          0.06342591 = sum of:
            0.06342591 = weight(_text_:web in 4707) [ClassicSimilarity], result of:
              0.06342591 = score(doc=4707,freq=42.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6609364 = fieldWeight in 4707, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  6. Wissensspeicher in digitalen Räumen : Nachhaltigkeit, Verfügbarkeit, semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008 (2010) 0.00
    0.0033085097 = product of:
      0.014888294 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 774) [ClassicSimilarity], result of:
              0.013840669 = score(doc=774,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=774)
          0.5 = coord(1/2)
        0.007967959 = product of:
          0.015935918 = sum of:
            0.015935918 = weight(_text_:22 in 774) [ClassicSimilarity], result of:
              0.015935918 = score(doc=774,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.15476047 = fieldWeight in 774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=774)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Content
    C. Begriffsarbeit in der Wissensorganisation Ingetraut Dahlberg: Begriffsarbeit in der Wissensorganisation Claudio Gnoli, Gabriele Merli, Gianni Pavan, Elisabetta Bernuzzi, and Marco Priano: Freely faceted classification for a Web-based bibliographic archive The BioAcoustic Reference Database Stefan Hauser: Terminologiearbeit im Bereich Wissensorganisation - Vergleich dreier Publikationen anhand der Darstellung des Themenkomplexes Thesaurus Daniel Kless: Erstellung eines allgemeinen Standards zur Wissensorganisation: Nutzen, Möglichkeiten, Herausforderungen, Wege D. Kommunikation und Lernen Gerald Beck und Simon Meissner: Strukturierung und Vermittlung von heterogenen (Nicht-)Wissensbeständen in der Risikokommunikation Angelo Chianese, Francesca Cantone, Mario Caropreso, and Vincenzo Moscato: ARCHAEOLOGY 2.0: Cultural E-Learning tools and distributed repositories supported by SEMANTICA, a System for Learning Object Retrieval and Adaptive Courseware Generation for e-learning environments Sonja Hierl, Lydia Bauer, Nadja Böller und Josef Herget: Kollaborative Konzeption von Ontologien in der Hochschullehre: Theorie, Chancen und mögliche Umsetzung Marc Wilhelm Küster, Christoph Ludwig, Yahya Al-Haff und Andreas Aschenbrenner: TextGrid: eScholarship und der Fortschritt der Wissenschaft durch vernetzte Angebote
  7. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.00
    0.0031877991 = product of:
      0.028690193 = sum of:
        0.028690193 = product of:
          0.057380386 = sum of:
            0.057380386 = weight(_text_:web in 3934) [ClassicSimilarity], result of:
              0.057380386 = score(doc=3934,freq=22.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.59793836 = fieldWeight in 3934, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
    RSWK
    Ontologie <Wissensverarbeitung> / Semantic Web
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
    Subject
    Ontologie <Wissensverarbeitung> / Semantic Web
    Theme
    Semantic Web
  8. Dietze, S.; Maynard, D.; Demidova, E.; Risse, T.; Stavrakas, Y.: Entity extraction and consolidation for social Web content preservation (2012) 0.00
    0.0028834727 = product of:
      0.025951253 = sum of:
        0.025951253 = product of:
          0.051902507 = sum of:
            0.051902507 = weight(_text_:web in 470) [ClassicSimilarity], result of:
              0.051902507 = score(doc=470,freq=18.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.5408555 = fieldWeight in 470, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=470)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    With the rapidly increasing pace at which Web content is evolving, particularly social media, preserving the Web and its evolution over time becomes an important challenge. Meaningful analysis of Web content lends itself to an entity-centric view to organise Web resources according to the information objects related to them. Therefore, the crucial challenge is to extract, detect and correlate entities from a vast number of heterogeneous Web resources where the nature and quality of the content may vary heavily. While a wealth of information extraction tools aid this process, we believe that, the consolidation of automatically extracted data has to be treated as an equally important step in order to ensure high quality and non-ambiguity of generated data. In this paper we present an approach which is based on an iterative cycle exploiting Web data for (1) targeted archiving/crawling of Web objects, (2) entity extraction, and detection, and (3) entity correlation. The long-term goal is to preserve Web content over time and allow its navigation and analysis based on well-formed structured RDF data about entities.
  9. ¬The Semantic Web: latest advances and new domains : 12th European Semantic Web Conference, ESWC 2015 Portoroz, Slovenia, May 31 -- June 4, 2015. Proceedings (2015) 0.00
    0.0028770578 = product of:
      0.025893519 = sum of:
        0.025893519 = product of:
          0.051787037 = sum of:
            0.051787037 = weight(_text_:web in 2028) [ClassicSimilarity], result of:
              0.051787037 = score(doc=2028,freq=28.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.5396523 = fieldWeight in 2028, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2028)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 12th Extended Semantic Web Conference, ESWC 2014, held in Anissaras, Portoroz, Slovenia, in May/June 2015. The 43 revised full papers presented together with three invited talks were carefully reviewed and selected from 164 submissions. This program was completed by a demonstration and poster session, in which researchers had the chance to present their latest results and advances in the form of live demos. In addition, the PhD Symposium program included 12 contributions, selected out of 16 submissions. The core tracks of the research conference were complemented with new tracks focusing on linking machine and human computation at web scale (cognition and Semantic Web, Human Computation and Crowdsourcing) beside the following subjects Vocabularies, Schemas, Ontologies, Reasoning, Linked Data, Semantic Web and Web Science, Semantic Data Management, Big data, Scalability, Natural Language Processing and Information Retrieval, Machine Learning, Mobile Web, Internet of Things and Semantic Streams, Services, Web APIs and the Web of Things, Cognition and Semantic Web, Human Computation and Crowdsourcing and In-Use Industrial Track as well
    Content
    Inhalt (Auszug) Vocabularies, Schemas, Ontologies: Requirements for and Evaluation of User Support for Large-Scale Ontology Alignment / Valentina Ivanova, Patrick Lambrix, and Johan Åberg -- RODI: A Benchmark for Automatic Mapping Generation in Relational-to-Ontology Data Integration / Christoph Pinkel, Carsten Binnig, Ernesto Jiménez-Ruiz, Wolfgang May, Dominique Ritze, Martin G. Skjæveland, Alessandro Solimando, and Evgeny Kharlamov -- VocBench: A Web Application for Collaborative Development of Multilingual Thesauri. / Armando Stellato, Sachit Rajbhandari, Andrea Turbati, Manuel Fiorelli, Caterina Caracciolo, Tiziano Lorenzetti, Johannes Keizer, and Maria Teresa Pazienza -- Leveraging and Balancing Heterogeneous Sources of Evidence in Ontology Learning / Gerhard Wohlgenannt Natural Language Processing and Information Retrieval Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text / Achim Rettinger, Artem Schumilin, Steffen Thoma, and Basil Ell
    Series
    Information Systems and Applications, incl. Internet/Web, and HCI; Bd. 9088
    Theme
    Semantic Web
  10. Web search engine research (2012) 0.00
    0.0028252148 = product of:
      0.025426934 = sum of:
        0.025426934 = product of:
          0.050853867 = sum of:
            0.050853867 = weight(_text_:web in 478) [ClassicSimilarity], result of:
              0.050853867 = score(doc=478,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.5299281 = fieldWeight in 478, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=478)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    "Web Search Engine Research", edited by Dirk Lewandowski, provides an understanding of Web search engines from the unique perspective of Library and Information Science. The book explores a range of topics including retrieval effectiveness, user satisfaction, the evaluation of search interfaces, the impact of search on society, reliability of search results, query log analysis, user guidance in the search process, and the influence of search engine optimization (SEO) on results quality. While research in computer science has mainly focused on technical aspects of search engines, LIS research is centred on users' behaviour when using search engines and how this interaction can be evaluated. LIS research provides a unique perspective in intermediating between the technical aspects, user aspects and their impact on their role in knowledge acquisition. This book is directly relevant to researchers and practitioners in library and information science, computer science, including Web researchers.
    LCSH
    Web search engines
    Subject
    Web search engines
  11. Knowledge organization in the 21st century : between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland (2014) 0.00
    0.0026559862 = product of:
      0.023903877 = sum of:
        0.023903877 = product of:
          0.047807753 = sum of:
            0.047807753 = weight(_text_:22 in 4693) [ClassicSimilarity], result of:
              0.047807753 = score(doc=4693,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.46428138 = fieldWeight in 4693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4693)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
  12. Linked data and user interaction : the road ahead (2015) 0.00
    0.002542984 = product of:
      0.022886856 = sum of:
        0.022886856 = product of:
          0.04577371 = sum of:
            0.04577371 = weight(_text_:web in 2552) [ClassicSimilarity], result of:
              0.04577371 = score(doc=2552,freq=14.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.47698978 = fieldWeight in 2552, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
    LCSH
    Semantic Web
    RSWK
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
    Subject
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
    Semantic Web
    Theme
    Semantic Web
  13. Semantic applications (2018) 0.00
    0.0023543455 = product of:
      0.02118911 = sum of:
        0.02118911 = product of:
          0.04237822 = sum of:
            0.04237822 = weight(_text_:web in 5204) [ClassicSimilarity], result of:
              0.04237822 = score(doc=5204,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.4416067 = fieldWeight in 5204, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Theme
    Semantic Web
  14. Grassi, M.; Morbidoni, C.; Nucci, M.; Fonda, S.; Ledda, G.: Pundit: semantically structured annotations for Web contents and digital libraries (2012) 0.00
    0.0019223152 = product of:
      0.017300837 = sum of:
        0.017300837 = product of:
          0.034601673 = sum of:
            0.034601673 = weight(_text_:web in 473) [ClassicSimilarity], result of:
              0.034601673 = score(doc=473,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.36057037 = fieldWeight in 473, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=473)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This paper introduces Pundit: a novel semantic annotation tool that allows users to create structured data while annotating Web pages relying on stand-off mark-up techniques. Pundit provides support for different types of annotations, ranging from simple comments to semantic links to Web of data entities and fine granular cross-references and citations. In addition, it can be configured to include custom controlled vocabularies and has been designed to enable groups of users to share their annotations and collaboratively create structured knowledge. Pundit allows creating semantically typed relations among heterogeneous resources, both having different multimedia formats and belonging to different pages and domains. In this way, annotations can reinforce existing data connections or create new ones and augment original information generating new semantically structured aggregations of knowledge. These can later be exploited both by other users to better navigate DL and Web content, and by applications to improve data management.
  15. Classification and ontology: formal approaches and access to knowledge : proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands (2011) 0.00
    0.0018834766 = product of:
      0.016951289 = sum of:
        0.016951289 = product of:
          0.033902578 = sum of:
            0.033902578 = weight(_text_:web in 4806) [ClassicSimilarity], result of:
              0.033902578 = score(doc=4806,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.35328537 = fieldWeight in 4806, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4806)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Content
    Inhalt: Patrick Hayes: On being the same: keynote address 1. The role of classification and ontology on the Web Dan Brickley: Classification, collaboration and the Web of data - Guus Schreiber: Issues in publishing and aligning Web vocabularies - Thomas Baker: The concepts of knowledge organization systems as hubs in the Web of data 2. Classifications and ontologies on their own terms Barbara H. Kwasnik: Approaches to providing context in knowledge representation structures - Richard Smiraglia; Charles van den Heuvel; Thomas M. Dousa: Interactions between elementary structures in universes of knowledge - Emad Khazraee; Xia Lin: Demystifying ontology 3. Classification meets the Web Daniel Kless; Jutta Lindenthal; Simon Milton; Edmund Kazmierczak: Interoperability of knowledge organization systems with and through ontologies - Vincenzo Maltese; Feroz Farazi: Towards the integration of knowledge organization systems with the linked data cloud - Maria Rüther; Joachim Fock; Thomas Schultz-Krutisch; Thomas Bandholtz: Classification and reference vocabulary in linked environment data
    4. Classification and ontology in specific subjects Andrew Buxton: Ontologies and classification of chemicals: can they help each other? - Wolfram Sperber; Patrick D. F. Ion: Content analysis and classification in mathematics 5. Categories and relations: key elements of ontologies Roberto Poli: Ontology as categorial analysis - Dagobert Soergel: Towards a relation ontology for the Semantic Web - Rebecca Green; Michael Panzer: Relations in the notational hierarchy of the Dewey Decimal Classification 6. Modelling concepts and structures in analytico-synthetic classifications Ingetraut Dahlberg: A faceted classification of general concepts - Claudio Gnoli; Philippe Cousson; Tom Pullman; Gabriele Merli; Rick Szostak: Representing the structural elements of a freely faceted classification - Vanda Broughton: Facet analysis as a tool for modelling subject domains and terminologies - Devika P. Madalli; A. R. D. Prasad: Analytico synthetic approach for handling knowledge diversity in media content analysis
  16. Managing metadata in web-scale discovery systems (2016) 0.00
    0.0018834766 = product of:
      0.016951289 = sum of:
        0.016951289 = product of:
          0.033902578 = sum of:
            0.033902578 = weight(_text_:web in 3336) [ClassicSimilarity], result of:
              0.033902578 = score(doc=3336,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.35328537 = fieldWeight in 3336, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3336)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This book shows you how to harness the power of linked data and web-scale discovery systems to manage and link widely varied content across your library collection. Libraries are increasingly using web-scale discovery systems to help clients find a wide assortment of library materials, including books, journal articles, special collections, archival collections, videos, music and open access collections. Depending on the library material catalogued, the discovery system might need to negotiate different metadata standards, such as AACR, RDA, RAD, FOAF, VRA Core, METS, MODS, RDF and more. In Managing Metadata in Web-Scale Discovery Systems, editor Louise Spiteri and a range of international experts show you how to: * maximize the effectiveness of web-scale discovery systems * provide a smooth and seamless discovery experience to your users * help users conduct searches that yield relevant results * manage the sheer volume of items to which you can provide access, so your users can actually find what they need * maintain shared records that reflect the needs, languages, and identities of culturally and ethnically varied communities * manage metadata both within, across, and outside, library discovery tools by converting your library metadata to linked open data that all systems can access * manage user generated metadata from external services such as Goodreads and LibraryThing * mine user generated metadata to better serve your users in areas such as collection development or readers' advisory. The book will be essential reading for cataloguers, technical services and systems librarians and library and information science students studying modules on metadata, cataloguing, systems design, data management, and digital libraries. The book will also be of interest to those managing metadata in archives, museums and other cultural heritage institutions.
    Content
    1. Introduction: the landscape of web-scale discovery - Louise Spiteri 2. Sharing metadata across discovery systems - Marshall Breeding, Angela Kroeger and Heather Moulaison Sandy 3. Managing linked open data across discovery systems - Ali Shiri and Danoosh Davoodi 4. Redefining library resources in discovery systems - Christine DeZelar-Tiedman 5. Managing volume in discovery systems - Aaron Tay 6. Managing outsourced metadata in discovery systems - Laurel Tarulli 7. Managing user-generated metadata in discovery systems - Louise Spiteri
  17. Next generation search engines : advanced models for information retrieval (2012) 0.00
    0.0017981612 = product of:
      0.01618345 = sum of:
        0.01618345 = product of:
          0.0323669 = sum of:
            0.0323669 = weight(_text_:web in 357) [ClassicSimilarity], result of:
              0.0323669 = score(doc=357,freq=28.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3372827 = fieldWeight in 357, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=357)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
  18. Scholarly metrics under the microscope : from citation analysis to academic auditing (2015) 0.00
    0.0017706576 = product of:
      0.015935918 = sum of:
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 4654) [ClassicSimilarity], result of:
              0.031871837 = score(doc=4654,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 4654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4654)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    22. 1.2017 17:12:50
  19. Innovations in information retrieval : perspectives for theory and practice (2011) 0.00
    0.0017193711 = product of:
      0.015474339 = sum of:
        0.015474339 = product of:
          0.030948678 = sum of:
            0.030948678 = weight(_text_:web in 1757) [ClassicSimilarity], result of:
              0.030948678 = score(doc=1757,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.32250395 = fieldWeight in 1757, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1757)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The advent of new information retrieval (IR) technologies and approaches to storage and retrieval provide communities with previously unheard of opportunities for mass documentation, digitization, and the recording of information in all its forms. This book introduces and contextualizes these developments and looks at supporting research in IR, the debates, theories and issues. Contributed by an international team of experts, each authored chapter provides a snapshot of changes in the field, as well as the importance of developing innovation, creativity and thinking in IR practice and research. Key discussion areas include: browsing in new information environments classification revisited: a web of knowledge approaches to fiction retrieval research music information retrieval research folksonomies, social tagging and information retrieval digital information interaction as semantic navigation assessing web search machines: a webometric approach. The questions raised are of significance to the whole international library and information science community, and this is essential reading for LIS professionals , researchers and students, and for all those interested in the future of IR.
    Content
    Inhalt: Bawden, D.: Encountering on the road to serendip? Browsing in new information environments. - Slavic, A.: Classification revisited: a web of knowledge. - Vernitski, A. u. P. Rafferty: Approaches to fiction retrieval research, from theory to practice? - Inskip, C.: Music information retrieval research. - Peters, I.: Folksonomies, social tagging and information retrieval. - Kopak, R., L. Freund u. H. O'Brien: Digital information interaction as semantic navigation. - Thelwall, M.: Assessing web search engines: a webometric approach
    Footnote
    Rez. in: Mitt VÖB 64(2911) H.3/4, S.547-553 (O. Oberhauser): "Dieser mit 156 Seiten (inklusive Register) relativ schmale Band enthält sieben mit dem Gütesiegel "peer-reviewed" versehene Beiträge namhafter Autoren zu "research fronts" auf dem Gebiet des Information Retrieval (IR) - ein Begriff, der hier durchaus breit verstanden wird. Wie die Herausgeber Allen Foster und Pauline Rafferty - beide aus dem Department of Information Studies an der Aberystwyth University (Wales) - in ihrer Einleitung betonen, sind Theorie und Praxis der Wissensorganisation im Internet- Zeitalter nicht mehr nur die Domäne von Informationswissenschaftlern und Bibliotheksfachleuten, sondern auch von Informatikern, Semantic-Web-Entwicklern und Wissensmanagern aus den verschiedensten Institutionen; neben das wissenschaftliche Interesse am Objektbereich ist nun auch das kommerzielle getreten. Die Verarbeitung von Massendaten, die Beschäftigung mit komplexen Medien und die Erforschung der Möglichkeiten zur Einbeziehung der Rezipienten sind insbesondere die Aspekte, um die es heute geht. ..." Weitere Rez. in: Library review 61(2012) no.3, S.233-235 (G. Macgregor); J. Doc. 69(2013) no.2, S.320-321 (J. Bates)
  20. Bozzato, L.; Braghin, S.; Trombetta, A.: ¬A method and guidelines for the cooperation of ontologies and relational databases in Semantic Web applications (2012) 0.00
    0.0016647738 = product of:
      0.014982964 = sum of:
        0.014982964 = product of:
          0.029965928 = sum of:
            0.029965928 = weight(_text_:web in 475) [ClassicSimilarity], result of:
              0.029965928 = score(doc=475,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3122631 = fieldWeight in 475, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=475)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Ontologies are a well-affirmed way of representing complex structured information and they provide a sound conceptual foundation to Semantic Web technologies. On the other hand, a huge amount of information available on the web is stored in legacy relational databases. The issues raised by the collaboration between such worlds are well known and addressed by consolidated mapping languages. Nevertheless, to the best of our knowledge, a best practice for such cooperation is missing: in this work we thus present a method to guide the definition of cooperations between ontology-based and relational databases systems. Our method, mainly based on ideas from knowledge reuse and re-engineering, is aimed at the separation of data between database and ontology instances and at the definition of suitable mappings in both directions, taking advantage of the representation possibilities offered by both models. We present the steps of our method along with guidelines for their application. Finally, we propose an example of its deployment in the context of a large repository of bio-medical images we developed.

Types

  • m 38
  • el 7
  • a 1
  • More… Less…

Subjects