Search (14 results, page 1 of 1)

  • × language_ss:"e"
  • × type_ss:"x"
  • × year_i:[2010 TO 2020}
  1. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.40
    0.3954329 = product of:
      0.5931493 = sum of:
        0.14010909 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.14010909 = score(doc=563,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.020761002 = product of:
          0.041522004 = sum of:
            0.041522004 = weight(_text_:web in 563) [ClassicSimilarity], result of:
              0.041522004 = score(doc=563,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43268442 = fieldWeight in 563, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
        0.14010909 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.14010909 = score(doc=563,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.14010909 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.14010909 = score(doc=563,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.14010909 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.14010909 = score(doc=563,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.023903877 = score(doc=563,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.6666667 = coord(6/9)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  2. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.35
    0.34728834 = product of:
      0.5209325 = sum of:
        0.038919196 = product of:
          0.11675758 = sum of:
            0.11675758 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.11675758 = score(doc=4997,freq=2.0), product of:
                0.24929643 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02940506 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.33333334 = coord(1/3)
        0.11675758 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.11675758 = score(doc=4997,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.014982964 = product of:
          0.029965928 = sum of:
            0.029965928 = weight(_text_:web in 4997) [ClassicSimilarity], result of:
              0.029965928 = score(doc=4997,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3122631 = fieldWeight in 4997, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.5 = coord(1/2)
        0.11675758 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.11675758 = score(doc=4997,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.11675758 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.11675758 = score(doc=4997,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.11675758 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.11675758 = score(doc=4997,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
      0.6666667 = coord(6/9)
    
    Abstract
    While classifications are heavily used to categorize web content, the evolution of the web foresees a more formal structure - ontology - which can serve this purpose. Ontologies are core artifacts of the Semantic Web which enable machines to use inference rules to conduct automated reasoning on data. Lightweight ontologies bridge the gap between classifications and ontologies. A lightweight ontology (LO) is an ontology representing a backbone taxonomy where the concept of the child node is more specific than the concept of the parent node. Formal lightweight ontologies can be generated from their informal ones. The key applications of formal lightweight ontologies are document classification, semantic search, and data integration. However, these applications suffer from the following problems: the disambiguation accuracy of the state of the art NLP tools used in generating formal lightweight ontologies from their informal ones; the lack of background knowledge needed for the formal lightweight ontologies; and the limitation of ontology reuse. In this dissertation, we propose a novel solution to these problems in formal lightweight ontologies; namely, faceted lightweight ontology (FLO). FLO is a lightweight ontology in which terms, present in each node label, and their concepts, are available in the background knowledge (BK), which is organized as a set of facets. A facet can be defined as a distinctive property of the groups of concepts that can help in differentiating one group from another. Background knowledge can be defined as a subset of a knowledge base, such as WordNet, and often represents a specific domain.
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
  3. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.31
    0.31084433 = product of:
      0.55951977 = sum of:
        0.031135354 = product of:
          0.09340606 = sum of:
            0.09340606 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.09340606 = score(doc=5820,freq=2.0), product of:
                0.24929643 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5555556 = coord(5/9)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  4. Tavakolizadeh-Ravari, M.: Analysis of the long term dynamics in thesaurus developments and its consequences (2017) 0.00
    0.0022649334 = product of:
      0.020384401 = sum of:
        0.020384401 = product of:
          0.040768802 = sum of:
            0.040768802 = weight(_text_:seite in 3081) [ClassicSimilarity], result of:
              0.040768802 = score(doc=3081,freq=2.0), product of:
                0.16469958 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.02940506 = queryNorm
                0.24753433 = fieldWeight in 3081, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3081)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Die Arbeit analysiert die dynamische Entwicklung und den Gebrauch von Thesaurusbegriffen. Zusätzlich konzentriert sie sich auf die Faktoren, die die Zahl von Indexbegriffen pro Dokument oder Zeitschrift beeinflussen. Als Untersuchungsobjekt dienten der MeSH und die entsprechende Datenbank "MEDLINE". Die wichtigsten Konsequenzen sind: 1. Der MeSH-Thesaurus hat sich durch drei unterschiedliche Phasen jeweils logarithmisch entwickelt. Solch einen Thesaurus sollte folgenden Gleichung folgen: "T = 3.076,6 Ln (d) - 22.695 + 0,0039d" (T = Begriffe, Ln = natürlicher Logarithmus und d = Dokumente). Um solch einen Thesaurus zu konstruieren, muss man demnach etwa 1.600 Dokumente von unterschiedlichen Themen des Bereiches des Thesaurus haben. Die dynamische Entwicklung von Thesauri wie MeSH erfordert die Einführung eines neuen Begriffs pro Indexierung von 256 neuen Dokumenten. 2. Die Verteilung der Thesaurusbegriffe erbrachte drei Kategorien: starke, normale und selten verwendete Headings. Die letzte Gruppe ist in einer Testphase, während in der ersten und zweiten Kategorie die neu hinzukommenden Deskriptoren zu einem Thesauruswachstum führen. 3. Es gibt ein logarithmisches Verhältnis zwischen der Zahl von Index-Begriffen pro Aufsatz und dessen Seitenzahl für die Artikeln zwischen einer und einundzwanzig Seiten. 4. Zeitschriftenaufsätze, die in MEDLINE mit Abstracts erscheinen erhalten fast zwei Deskriptoren mehr. 5. Die Findablity der nicht-englisch sprachigen Dokumente in MEDLINE ist geringer als die englische Dokumente. 6. Aufsätze der Zeitschriften mit einem Impact Factor 0 bis fünfzehn erhalten nicht mehr Indexbegriffe als die der anderen von MEDINE erfassten Zeitschriften. 7. In einem Indexierungssystem haben unterschiedliche Zeitschriften mehr oder weniger Gewicht in ihrem Findability. Die Verteilung der Indexbegriffe pro Seite hat gezeigt, dass es bei MEDLINE drei Kategorien der Publikationen gibt. Außerdem gibt es wenige stark bevorzugten Zeitschriften."
  5. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.00
    0.0019223152 = product of:
      0.017300837 = sum of:
        0.017300837 = product of:
          0.034601673 = sum of:
            0.034601673 = weight(_text_:web in 4232) [ClassicSimilarity], result of:
              0.034601673 = score(doc=4232,freq=32.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.36057037 = fieldWeight in 4232, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4232)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Theme
    Semantic Web
  6. Smith, D.A.: Exploratory and faceted browsing over heterogeneous and cross-domain data sources. (2011) 0.00
    0.0016311385 = product of:
      0.014680246 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 4839) [ClassicSimilarity], result of:
              0.029360492 = score(doc=4839,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 4839, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4839)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Exploration of heterogeneous data sources increases the value of information by allowing users to answer questions through exploration across multiple sources; Users can use information that has been posted across the Web to answer questions and learn about new domains. We have conducted research that lowers the interrogation time of faceted data, by combining related information from different sources. The work contributes methodologies in combining heterogenous sources, and how to deliver that data to a user interface scalably, with enough performance to support rapid interrogation of the knowledge by the user. The work also contributes how to combine linked data sources so that users can create faceted browsers that target the information facets of their needs. The work is grounded and proven in a number of experiments and test cases that study the contributions in domain research work.
    Theme
    Semantic Web
  7. Líska, M.: Evaluation of mathematics retrieval (2013) 0.00
    0.0013456206 = product of:
      0.012110585 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 1653) [ClassicSimilarity], result of:
              0.02422117 = score(doc=1653,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 1653, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1653)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The thesis deals with the evaluation of mathematics information retrieval (IR). It gives an overview of the history of regular IR evaluation, initiatives that are engaged in this field of research as well as most common methods and measures used for evaluation. The findings are applied to the specifics of mathematics retrieval. This thesis also summarizes the state-of-the-art of MIaS math search system, which is already being used in an international web portal. Latest developments aiming towards the second version of the system are described. In addition to participating in the international evaluation conference and workshop, MIaS is tested for effectiveness and efficiency in this work. Measured performance indicators are evaluated and future work is suggested accordingly.
  8. Seidlmayer, E.: ¬An ontology of digital objects in philosophy : an approach for practical use in research (2018) 0.00
    0.0013456206 = product of:
      0.012110585 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 5496) [ClassicSimilarity], result of:
              0.02422117 = score(doc=5496,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 5496, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5496)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The digitalization of research enables new scientific insights and methods, especially in the humanities. Nonetheless, electronic book editions, encyclopedias, mobile applications or web sites presenting research projects are not in broad use in academic philosophy. This is contradictory to the large amount of helpful tools facilitating research also bearing new scientific subjects and approaches. A possible solution to this dilemma is the systematization and promotion of these tools in order to improve their accessibility and fully exploit the potential of digitalization for philosophy.
  9. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 3829) [ClassicSimilarity], result of:
              0.020761002 = score(doc=3829,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 3829, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Theme
    Semantic Web
  10. Geisriegler, E.: Enriching electronic texts with semantic metadata : a use case for the historical Newspaper Collection ANNO (Austrian Newspapers Online) of the Austrian National Libraryhek (2012) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 595) [ClassicSimilarity], result of:
              0.019919898 = score(doc=595,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=595)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    3. 2.2013 18:00:22
  11. Knitel, M.: ¬The application of linked data principles to library data : opportunities and challenges (2012) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 599) [ClassicSimilarity], result of:
              0.017300837 = score(doc=599,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=599)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Linked Data hat sich im Laufe der letzten Jahre zu einem vorherrschenden Thema der Bibliothekswissenschaft entwickelt. Als ein Standard für Erfassung und Austausch von Daten, bestehen zahlreiche Berührungspunkte mit traditionellen bibliothekarischen Techniken. Diese Arbeit stellt in einem ersten Teil die grundlegenden Technologien dieses neuen Paradigmas vor, um sodann deren Anwendung auf bibliothekarische Daten zu untersuchen. Den zentralen Prinzipien der Linked Data Initiative folgend, werden dabei die Adressierung von Entitäten durch URIs, die Anwendung des RDF Datenmodells und die Verknüpfung von heterogenen Datenbeständen näher beleuchtet. Den dabei zu Tage tretenden Herausforderungen der Sicherstellung von qualitativ hochwertiger Information, der permanenten Adressierung von Inhalten im World Wide Web sowie Problemen der Interoperabilität von Metadatenstandards wird dabei besondere Aufmerksamkeit geschenkt. Der letzte Teil der Arbeit skizziert ein Programm, welches eine mögliche Erweiterung der Suchmaschine des österreichischen Bibliothekenverbundes darstellt. Dessen prototypische Umsetzung erlaubt eine realistische Einschätzung der derzeitigen Möglichkeiten von Linked Data und unterstreicht viele der vorher theoretisch erarbeiteten Themengebiete. Es zeigt sich, dass für den voll produktiven Einsatz von Linked Data noch viele Hürden zu überwinden sind. Insbesondere befinden sich viele Projekte derzeit noch in einem frühen Reifegrad. Andererseits sind die Möglichkeiten, die aus einem konsequenten Einsatz von RDF resultieren würden, vielversprechend. RDF qualifiziert sich somit als Kandidat für den Ersatz von auslaufenden bibliographischen Datenformaten wie MAB oder MARC.
  12. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.00
    8.853288E-4 = product of:
      0.007967959 = sum of:
        0.007967959 = product of:
          0.015935918 = sum of:
            0.015935918 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.015935918 = score(doc=4399,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    20. 1.2015 18:30:22
  13. Ziemba, L.: Information retrieval with concept discovery in digital collections for agriculture and natural resources (2011) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 4728) [ClassicSimilarity], result of:
              0.013840669 = score(doc=4728,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 4728, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4728)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The amount and complexity of information available in a digital form is already huge and new information is being produced every day. Retrieving information relevant to address a particular need becomes a significant issue. This work utilizes knowledge organization systems (KOS), such as thesauri and ontologies and applies information extraction (IE) and computational linguistics (CL) techniques to organize, manage and retrieve information stored in digital collections in the agricultural domain. Two real world applications of the approach have been developed and are available and actively used by the public. An ontology is used to manage the Water Conservation Digital Library holding a dynamic collection of various types of digital resources in the domain of urban water conservation in Florida, USA. The ontology based back-end powers a fully operational web interface, available at http://library.conservefloridawater.org. The system has demonstrated numerous benefits of the ontology application, including accurate retrieval of resources, information sharing and reuse, and has proved to effectively facilitate information management. The major difficulty encountered with the approach is that large and dynamic number of concepts makes it difficult to keep the ontology consistent and to accurately catalog resources manually. To address the aforementioned issues, a combination of IE and CL techniques, such as Vector Space Model and probabilistic parsing, with the use of Agricultural Thesaurus were adapted to automatically extract concepts important for each of the texts in the Best Management Practices (BMP) Publication Library--a collection of documents in the domain of agricultural BMPs in Florida available at http://lyra.ifas.ufl.edu/LIB. A new approach of domain-specific concept discovery with the use of Internet search engine was developed. Initial evaluation of the results indicates significant improvement in precision of information extraction. The approach presented in this work focuses on problems unique to agriculture and natural resources domain, such as domain specific concepts and vocabularies, but should be applicable to any collection of texts in digital format. It may be of potential interest for anyone who needs to effectively manage a collection of digital resources.
  14. Castellanos Ardila, J.P.: Investigation of an OSLC-domain targeting ISO 26262 : focus on the left side of the software V-model (2016) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 5819) [ClassicSimilarity], result of:
              0.013840669 = score(doc=5819,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 5819, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5819)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Industries have adopted a standardized set of practices for developing their products. In the automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard that specifies a set of requirements and recommendations for developing automotive safety-critical systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard must be included in the development process of a vehicle. Besides, a safety case that shows that the system is acceptably safe has to be provided. The provision of a safety case implies the execution of a precise documentation process. This process makes sure that the work products are available and traceable. Further, the documentation management is defined in the standard as a mandatory activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard and the maturing stack of semantic web technologies represent a promising integration platform for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for requirements, architecture, development management, among others, are expected to interact and shared data with the help of domains specifications created in OSLC. This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related information, where fragments of safety information can be generated. The steps carried out during the elaboration of this master thesis consist in the identification, representation, and shaping of the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the standard: Software unit design and implementation. Regardless of the use of a restricted portion of the standard during the execution of this thesis, the findings can be extended to other parts, and the conclusions can be generalize. This master thesis is considered one of the first steps towards the provision of an OSLC-based and ISO 26262-compliant methodological approach for representing and shaping the work products resulting from the execution of the safety lifecycle, documentation required in the conformation of an ISO-compliant safety case.