Next generation search engines : advanced models for information retrieval (2012)
0.01
0.006576005 = product of:
0.019728014 = sum of:
0.019728014 = weight(_text_:f in 357) [ClassicSimilarity], result of:
0.019728014 = score(doc=357,freq=2.0), product of:
0.17919436 = queryWeight, product of:
3.985786 = idf(docFreq=2232, maxDocs=44218)
0.04495835 = queryNorm
0.110092826 = fieldWeight in 357, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
3.985786 = idf(docFreq=2232, maxDocs=44218)
0.01953125 = fieldNorm(doc=357)
0.33333334 = coord(1/3)
- Content
- Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.