Next generation search engines : advanced models for information retrieval (2012)
0.00
0.00479935 = product of:
0.0095987 = sum of:
0.0095987 = product of:
0.0191974 = sum of:
0.0191974 = weight(_text_:m in 357) [ClassicSimilarity], result of:
0.0191974 = score(doc=357,freq=12.0), product of:
0.114023164 = queryWeight, product of:
2.4884486 = idf(docFreq=9980, maxDocs=44218)
0.045820985 = queryNorm
0.16836403 = fieldWeight in 357, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
2.4884486 = idf(docFreq=9980, maxDocs=44218)
0.01953125 = fieldNorm(doc=357)
0.5 = coord(1/2)
0.5 = coord(1/2)
- Content
- Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
- Type
- m