Search (4 results, page 1 of 1)

  • × theme_ss:"Auszeichnungssprachen"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Trotman, A.: Searching structured documents (2004) 0.04
    0.043804124 = product of:
      0.08760825 = sum of:
        0.08760825 = sum of:
          0.038116705 = weight(_text_:systems in 2538) [ClassicSimilarity], result of:
            0.038116705 = score(doc=2538,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.23767869 = fieldWeight in 2538, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2538)
          0.049491543 = weight(_text_:22 in 2538) [ClassicSimilarity], result of:
            0.049491543 = score(doc=2538,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.2708308 = fieldWeight in 2538, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2538)
      0.5 = coord(1/2)
    
    Abstract
    Structured document interchange formats such as XML and SGML are ubiquitous, however, information retrieval systems supporting structured searching are not. Structured searching can result in increased precision. A search for the author "Smith" in an unstructured corpus of documents specializing in iron-working could have a lower precision than a structured search for "Smith as author" in the same corpus. Analysis of XML retrieval languages identifies additional functionality that must be supported including searching at, and broken across multiple nodes in the document tree. A data structure is developed to support structured document searching. Application of this structure to information retrieval is then demonstrated. Document ranking is examined and adapted specifically for structured searching.
    Date
    14. 8.2004 10:39:22
  2. as: XML: Extensible Markup Language : I: Was ist XML? (2001) 0.02
    0.01767555 = product of:
      0.0353511 = sum of:
        0.0353511 = product of:
          0.0707022 = sum of:
            0.0707022 = weight(_text_:22 in 4950) [ClassicSimilarity], result of:
              0.0707022 = score(doc=4950,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38690117 = fieldWeight in 4950, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4950)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 3.2003 11:06:22
  3. Salgáné, M.M.: Our electronic era and bibliographic informations computer-related bibliographic data formats, metadata formats and BDML (2005) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 3005) [ClassicSimilarity], result of:
              0.043561947 = score(doc=3005,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 3005, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3005)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using new communication technologies libraries must face continuously new questions, possibilities and expectations. This study discusses library-related aspects of our electronic era and how computer-related data formats affect bibliographic dataprocessing to give a summary of the most important results. First bibliographic formats for the exchange of bibliographic and related information in the machine-readable form between different types of computer systems were created more than 30 years ago. The evolution of information technologies leads to the improvement of computer systems. In addition to the development of computers and media types Internet has a great influence on data structure as well. Since the introduction of MARC bibliographic format, technology of data exchange between computers and between different computer systems has reached a very sophisticated stage and has contributed to the creation of new standards in this field. Today libraries work with this new infrastructure that induces many challenges. One of the most significant challenges is moving from a relatively homogenous bibliographic environment to a diverse one. Despite these challenges such changes are achievable and necessary to exploit possibilities of new metadata and technologies like the Internet and XML (Extensible Markup Language). XML is an open standard, a universal language for data on the Web. XML is nearly six-years-old standard designed for the description and computer-based management of (semi)-structured data and structured texts. XML gives developers the power to deliver structured data from a wide variety of applications and it is also an ideal format from server-to-server transfer of structured data. XML also isn't limited for Internet use and is an especially valuable tool in the field of library. In fact, XML's main strength - organizing information - makes it perfect for exchanging data between different systems. Tools that work with the XML can be used to process XML records without incurring additional costs associated with one's own software development. In addition, XML is also a suitable format for library web services. The Department of Computer-related Graphic Design and Library and Information Sciences of Debrecen University launched the BDML (Bibliographic Description Markup Language) development project in order to standardize bibliogrphic description with the help of XML.
  4. Ioannides, D.: XML schema languages : beyond DTD (2000) 0.01
    0.010605331 = product of:
      0.021210661 = sum of:
        0.021210661 = product of:
          0.042421322 = sum of:
            0.042421322 = weight(_text_:22 in 720) [ClassicSimilarity], result of:
              0.042421322 = score(doc=720,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23214069 = fieldWeight in 720, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=720)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    28. 1.2006 19:01:22

Languages