Search (97 results, page 3 of 5)

  • × theme_ss:"Automatisches Abstracting"
  1. Haag, M.: Automatic text summarization (2002) 0.00
    0.0021604938 = product of:
      0.01728395 = sum of:
        0.01728395 = weight(_text_:information in 5662) [ClassicSimilarity], result of:
          0.01728395 = score(doc=5662,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.23274569 = fieldWeight in 5662, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=5662)
      0.125 = coord(1/8)
    
    Source
    Information - Wissenschaft und Praxis. 53(2002) H.4, 243-244
  2. Díaz, A.; Gervás, P.: User-model based personalized summarization (2007) 0.00
    0.0021604938 = product of:
      0.01728395 = sum of:
        0.01728395 = weight(_text_:information in 952) [ClassicSimilarity], result of:
          0.01728395 = score(doc=952,freq=8.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.23274569 = fieldWeight in 952, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=952)
      0.125 = coord(1/8)
    
    Abstract
    The potential of summary personalization is high, because a summary that would be useless to decide the relevance of a document if summarized in a generic manner, may be useful if the right sentences are selected that match the user interest. In this paper we defend the use of a personalized summarization facility to maximize the density of relevance of selections sent by a personalized information system to a given user. The personalization is applied to the digital newspaper domain and it used a user-model that stores long and short term interests using four reference systems: sections, categories, keywords and feedback terms. On the other side, it is crucial to measure how much information is lost during the summarization process, and how this information loss may affect the ability of the user to judge the relevance of a given document. The results obtained in two personalization systems show that personalized summaries perform better than generic and generic-personalized summaries in terms of identifying documents that satisfy user preferences. We also considered a user-centred direct evaluation that showed a high level of user satisfaction with the summaries.
    Source
    Information processing and management. 43(2007) no.6, S.1715-1734
  3. Liu, J.; Wu, Y.; Zhou, L.: ¬A hybrid method for abstracting newspaper articles (1999) 0.00
    0.002036933 = product of:
      0.016295465 = sum of:
        0.016295465 = weight(_text_:information in 4059) [ClassicSimilarity], result of:
          0.016295465 = score(doc=4059,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.21943474 = fieldWeight in 4059, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4059)
      0.125 = coord(1/8)
    
    Abstract
    This paper introduces a hybrid method for abstracting Chinese text. It integrates the statistical approach with language understanding. Some linguistics heuristics and segmentation are also incorporated into the abstracting process. The prototype system is of a multipurpose type catering for various users with different reqirements. Initial responses show that the proposed method contributes much to the flexibility and accuracy of the automatic Chinese abstracting system. In practice, the present work provides a path to developing an intelligent Chinese system for automating the information
    Source
    Journal of the American Society for Information Science. 50(1999) no.13, S.1234-1245
  4. Rodríguez-Vidal, J.; Carrillo-de-Albornoz, J.; Gonzalo, J.; Plaza, L.: Authority and priority signals in automatic summary generation for online reputation management (2021) 0.00
    0.0020129213 = product of:
      0.01610337 = sum of:
        0.01610337 = weight(_text_:information in 213) [ClassicSimilarity], result of:
          0.01610337 = score(doc=213,freq=10.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.21684799 = fieldWeight in 213, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=213)
      0.125 = coord(1/8)
    
    Abstract
    Online reputation management (ORM) comprises the collection of techniques that help monitoring and improving the public image of an entity (companies, products, institutions) on the Internet. The ORM experts try to minimize the negative impact of the information about an entity while maximizing the positive material for being more trustworthy to the customers. Due to the huge amount of information that is published on the Internet every day, there is a need to summarize the entire flow of information to obtain only those data that are relevant to the entities. Traditionally the automatic summarization task in the ORM scenario takes some in-domain signals into account such as popularity, polarity for reputation and novelty but exists other feature to be considered, the authority of the people. This authority depends on the ability to convince others and therefore to influence opinions. In this work, we propose the use of authority signals that measures the influence of a user jointly with (a) priority signals related to the ORM domain and (b) information regarding the different topics that influential people is talking about. Our results indicate that the use of authority signals may significantly improve the quality of the summaries that are automatically generated.
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.5, S.583-594
  5. Haag, M.: Automatic text summarization : Evaluation des Copernic Summarizer und mögliche Einsatzfelder in der Fachinformation der DaimlerCrysler AG (2002) 0.00
    0.0018710427 = product of:
      0.014968341 = sum of:
        0.014968341 = weight(_text_:information in 649) [ClassicSimilarity], result of:
          0.014968341 = score(doc=649,freq=6.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.20156369 = fieldWeight in 649, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=649)
      0.125 = coord(1/8)
    
    Abstract
    An evaluation of the Copernic Summarizer, a software for automatically summarizing text in various data formats, is being presented. It shall be assessed if and how the Copernic Summarizer can reasonably be used in the DaimlerChrysler Information Division in order to enhance the quality of its information services. First, an introduction into Automatic Text Summarization is given and the Copernic Summarizer is being presented. Various methods for evaluating Automatic Text Summarization systems and software ergonomics are presented. Two evaluation forms are developed with which the employees of the Information Division shall evaluate the quality and relevance of the extracted keywords and summaries as well as the software's usability. The quality and relevance assessment is done by comparing the original text to the summaries. Finally, a recommendation is given concerning the use of the Copernic Summarizer.
  6. Endres-Niggemeyer, B.: Summarizing information (1998) 0.00
    0.0018710427 = product of:
      0.014968341 = sum of:
        0.014968341 = weight(_text_:information in 688) [ClassicSimilarity], result of:
          0.014968341 = score(doc=688,freq=6.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.20156369 = fieldWeight in 688, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=688)
      0.125 = coord(1/8)
    
    Abstract
    Summarizing is the process of reducing the large information size of something like a novel or a scientific paper to a short summary or abstract comprising only the most essential points. Summarizing is frequent in everyday communication, but it is also a professional skill for journalists and others. Automated summarizing functions are urgently needed by Internet users who wish to avoid being overwhelmed by information. This book presents the state of the art and surveys related research; it deals with everyday and professional summarizing as well as computerized approaches. The author focuses in detail on the cognitive pro-cess involved in summarizing and supports this with a multimedia simulation systems on the accompanying CD-ROM
  7. Hahn, U.: ¬Die Verdichtung textuellen Wissens zu Information : vom Wandel methodischer Paradigmen beim automatischen Abstracting (2004) 0.00
    0.0018004115 = product of:
      0.014403292 = sum of:
        0.014403292 = weight(_text_:information in 4667) [ClassicSimilarity], result of:
          0.014403292 = score(doc=4667,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.19395474 = fieldWeight in 4667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=4667)
      0.125 = coord(1/8)
    
  8. Reeve, L.H.; Han, H.; Brooks, A.D.: ¬The use of domain-specific concepts in biomedical text summarization (2007) 0.00
    0.0018004115 = product of:
      0.014403292 = sum of:
        0.014403292 = weight(_text_:information in 955) [ClassicSimilarity], result of:
          0.014403292 = score(doc=955,freq=8.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.19395474 = fieldWeight in 955, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=955)
      0.125 = coord(1/8)
    
    Abstract
    Text summarization is a method for data reduction. The use of text summarization enables users to reduce the amount of text that must be read while still assimilating the core information. The data reduction offered by text summarization is particularly useful in the biomedical domain, where physicians must continuously find clinical trial study information to incorporate into their patient treatment efforts. Such efforts are often hampered by the high-volume of publications. This paper presents two independent methods (BioChain and FreqDist) for identifying salient sentences in biomedical texts using concepts derived from domain-specific resources. Our semantic-based method (BioChain) is effective at identifying thematic sentences, while our frequency-distribution method (FreqDist) removes information redundancy. The two methods are then combined to form a hybrid method (ChainFreq). An evaluation of each method is performed using the ROUGE system to compare system-generated summaries against a set of manually-generated summaries. The BioChain and FreqDist methods outperform some common summarization systems, while the ChainFreq method improves upon the base approaches. Our work shows that the best performance is achieved when the two methods are combined. The paper also presents a brief physician's evaluation of three randomly-selected papers from an evaluation corpus to show that the author's abstract does not always reflect the entire contents of the full-text.
    Source
    Information processing and management. 43(2007) no.6, S.1765-1776
  9. Yang, C.C.; Wang, F.L.: Hierarchical summarization of large documents (2008) 0.00
    0.0018004115 = product of:
      0.014403292 = sum of:
        0.014403292 = weight(_text_:information in 1719) [ClassicSimilarity], result of:
          0.014403292 = score(doc=1719,freq=8.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.19395474 = fieldWeight in 1719, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1719)
      0.125 = coord(1/8)
    
    Abstract
    Many automatic text summarization models have been developed in the last decades. Related research in information science has shown that human abstractors extract sentences for summaries based on the hierarchical structure of documents; however, the existing automatic summarization models do not take into account the human abstractor's behavior of sentence extraction and only consider the document as a sequence of sentences during the process of extraction of sentences as a summary. In general, a document exhibits a well-defined hierarchical structure that can be described as fractals - mathematical objects with a high degree of redundancy. In this article, we introduce the fractal summarization model based on the fractal theory. The important information is captured from the source document by exploring the hierarchical structure and salient features of the document. A condensed version of the document that is informatively close to the source document is produced iteratively using the contractive transformation in the fractal theory. The fractal summarization model is the first attempt to apply fractal theory to document summarization. It significantly improves the divergence of information coverage of summary and the precision of summary. User evaluations have been conducted. Results have indicated that fractal summarization is promising and outperforms current summarization techniques that do not consider the hierarchical structure of documents.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.6, S.887-902
  10. Hahn, U.: Automatisches Abstracting (2013) 0.00
    0.0018004115 = product of:
      0.014403292 = sum of:
        0.014403292 = weight(_text_:information in 721) [ClassicSimilarity], result of:
          0.014403292 = score(doc=721,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.19395474 = fieldWeight in 721, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=721)
      0.125 = coord(1/8)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6., völlig neu gefaßte Ausgabe. Hrsg. von R. Kuhlen, W. Semar u. D. Strauch. Begründet von Klaus Laisiepen, Ernst Lutterbeck, Karl-Heinrich Meyer-Uhlenried
  11. Soricut, R.; Marcu, D.: Abstractive headline generation using WIDL-expressions (2007) 0.00
    0.0017823165 = product of:
      0.014258532 = sum of:
        0.014258532 = weight(_text_:information in 943) [ClassicSimilarity], result of:
          0.014258532 = score(doc=943,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.1920054 = fieldWeight in 943, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=943)
      0.125 = coord(1/8)
    
    Abstract
    We present a new paradigm for the automatic creation of document headlines that is based on direct transformation of relevant textual information into well-formed textual output. Starting from an input document, we automatically create compact representations of weighted finite sets of strings, called WIDL-expressions, which encode the most important topics in the document. A generic natural language generation engine performs the headline generation task, driven by both statistical knowledge encapsulated in WIDL-expressions (representing topic biases induced by the input document) and statistical knowledge encapsulated in language models (representing biases induced by the target language). Our evaluation shows similar performance in quality with a state-of-the-art, extractive approach to headline generation, and significant improvements in quality over previously proposed solutions to abstractive headline generation.
    Source
    Information processing and management. 43(2007) no.6, S.1536-1548
  12. Dammeyer, A.; Jürgensen, W.; Krüwel, C.; Poliak, E.; Ruttkowski, S.; Schäfer, Th.; Sirava, M.; Hermes, T.: Videoanalyse mit DiVA (1998) 0.00
    0.0016037204 = product of:
      0.012829763 = sum of:
        0.012829763 = product of:
          0.025659526 = sum of:
            0.025659526 = weight(_text_:retrieval in 23) [ClassicSimilarity], result of:
              0.025659526 = score(doc=23,freq=2.0), product of:
                0.12796146 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.042302497 = queryNorm
                0.20052543 = fieldWeight in 23, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=23)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Abstract
    Die Bedeutung von Videos nimmt für multimediale Systeme stetig zu. Dabei existiert eine Vielzahl von Produkten zur Betrachtung von Videos, allerdings nur wenige Ansätze, den Inhalt eines Videos zu erschließen. Das DiVA-System, welches an der Universität Bremen im Rahmen eines studentischen Projektes entwickelt wird, dient der automatischen Analyse von MPEG-I Videofilmen. Der dabei verfolgte Ansatz läßt sich in vier Phasen gliedern. Zunächst wird der Videofilm durch eine Shotanalyse in seine einzelnen Kameraeinstellungen (Shots) unterteilt. Darauf aufbauend findet eine Kamerabewegungsanalyse sowie die Erstellung von Mosaicbildern statt. Mit Methoden der künstlichen Intelligenz und der digitalen Bildverarbeitung wird das analysierte Material nach Bild- und Toninformationen ausgewertet. Das Resultat ist eine textuelle Beschreibung eines Videofilms, auf der mit Hilfe von Text-Retrieval-Systemen recherchiert werden kann
  13. Craven, T.C.: Abstracts produced using computer assistance (2000) 0.00
    0.0015276999 = product of:
      0.012221599 = sum of:
        0.012221599 = weight(_text_:information in 4809) [ClassicSimilarity], result of:
          0.012221599 = score(doc=4809,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.16457605 = fieldWeight in 4809, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4809)
      0.125 = coord(1/8)
    
    Abstract
    Experimental subjects wrote abstracts using a simplified version of the TEXNET abstracting assistance software. In addition to the full text, subjects were presented with either keywords or phrases extracted automatically. The resulting abstracts, and the times taken, were recorded automatically; some additional information was gathered by oral questionnaire. Selected abstracts produced were evaluated on various criteria by independent raters. Results showed considerable variation among subjects, but 37% found the keywords or phrases 'quite' or 'very' useful in writing their abstracts. Statistical analysis failed to support several hypothesized relations: phrases were not viewed as significantly more helpful than keywords; and abstracting experience did not correlate with originality of wording, approximation of the author abstract, or greater conciseness. Requiring further study are some unanticipated strong correlations including the following: Windows experience and writing an abstract like the author's; experience reading abstracts and thinking one had written a good abstract; gender and abstract length; gender and use of words and phrases from the original text. Results have also suggested possible modifications to the TEXNET software
    Source
    Journal of the American Society for Information Science. 51(2000) no.8, S.745-756
  14. Chen, H.-H.; Kuo, J.-J.; Huang, S.-J.; Lin, C.-J.; Wung, H.-C.: ¬A summarization system for Chinese news from multiple sources (2003) 0.00
    0.0015276999 = product of:
      0.012221599 = sum of:
        0.012221599 = weight(_text_:information in 2115) [ClassicSimilarity], result of:
          0.012221599 = score(doc=2115,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.16457605 = fieldWeight in 2115, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2115)
      0.125 = coord(1/8)
    
    Abstract
    This article proposes a summarization system for multiple documents. It employs not only named entities and other signatures to cluster news from different sources, but also employs punctuation marks, linking elements, and topic chains to identify the meaningful units (MUs). Using nouns and verbs to identify the similar MUs, focusing and browsing models are applied to represent the summarization results. To reduce information loss during summarization, informative words in a document are introduced. For the evaluation, a question answering system (QA system) is proposed to substitute the human assessors. In large-scale experiments containing 140 questions to 17,877 documents, the results show that those models using informative words outperform pure heuristic voting-only strategy by news reporters. This model can be easily further applied to summarize multilingual news from multiple sources.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.13, S.1224-1236
  15. Abdi, A.; Idris, N.; Alguliev, R.M.; Aliguliyev, R.M.: Automatic summarization assessment through a combination of semantic and syntactic information for intelligent educational systems (2015) 0.00
    0.0015276999 = product of:
      0.012221599 = sum of:
        0.012221599 = weight(_text_:information in 2681) [ClassicSimilarity], result of:
          0.012221599 = score(doc=2681,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.16457605 = fieldWeight in 2681, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2681)
      0.125 = coord(1/8)
    
    Source
    Information processing and management. 51(2015) no.4, S.340-358
  16. Martinez-Romo, J.; Araujo, L.; Fernandez, A.D.: SemGraph : extracting keyphrases following a novel semantic graph-based approach (2016) 0.00
    0.0015276999 = product of:
      0.012221599 = sum of:
        0.012221599 = weight(_text_:information in 2832) [ClassicSimilarity], result of:
          0.012221599 = score(doc=2832,freq=4.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.16457605 = fieldWeight in 2832, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2832)
      0.125 = coord(1/8)
    
    Abstract
    Keyphrases represent the main topics a text is about. In this article, we introduce SemGraph, an unsupervised algorithm for extracting keyphrases from a collection of texts based on a semantic relationship graph. The main novelty of this algorithm is its ability to identify semantic relationships between words whose presence is statistically significant. Our method constructs a co-occurrence graph in which words appearing in the same document are linked, provided their presence in the collection is statistically significant with respect to a null model. Furthermore, the graph obtained is enriched with information from WordNet. We have used the most recent and standardized benchmark to evaluate the system ability to detect the keyphrases that are part of the text. The result is a method that achieves an improvement of 5.3% and 7.28% in F measure over the two labeled sets of keyphrases used in the evaluation of SemEval-2010.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.71-82
  17. Craven, T.C.: ¬A computer-aided abstracting tool kit (1993) 0.00
    0.0014403292 = product of:
      0.011522634 = sum of:
        0.011522634 = weight(_text_:information in 6506) [ClassicSimilarity], result of:
          0.011522634 = score(doc=6506,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.1551638 = fieldWeight in 6506, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6506)
      0.125 = coord(1/8)
    
    Source
    Canadian journal of information and library science. 18(1993) no.2, S.20-31
  18. Brandow, R.; Mitze, K.; Rau, L.F.: Automatic condensation of electronic publications by sentence selection (1995) 0.00
    0.0014403292 = product of:
      0.011522634 = sum of:
        0.011522634 = weight(_text_:information in 2929) [ClassicSimilarity], result of:
          0.011522634 = score(doc=2929,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.1551638 = fieldWeight in 2929, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2929)
      0.125 = coord(1/8)
    
    Source
    Information processing and management. 31(1995) no.5, S.675-685
  19. Sparck Jones, K.; Endres-Niggemeyer, B.: Introduction: automatic summarizing (1995) 0.00
    0.0014403292 = product of:
      0.011522634 = sum of:
        0.011522634 = weight(_text_:information in 2931) [ClassicSimilarity], result of:
          0.011522634 = score(doc=2931,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.1551638 = fieldWeight in 2931, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2931)
      0.125 = coord(1/8)
    
    Source
    Information processing and management. 31(1995) no.5, S.625-630
  20. Johnson, F.: Automatic abstracting research (1995) 0.00
    0.0014403292 = product of:
      0.011522634 = sum of:
        0.011522634 = weight(_text_:information in 3847) [ClassicSimilarity], result of:
          0.011522634 = score(doc=3847,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.1551638 = fieldWeight in 3847, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3847)
      0.125 = coord(1/8)
    
    Abstract
    Discusses the attraction for researchers of the prospect of automatically generating abstracts but notes that the promise of superseding the human effort has yet to be realized. Notes ways in which progress in automatic abstracting research may come about and suggests a shift in the aim from reproducing the conventional benefits of abstracts to accentuating the advantages to users of the computerized representation of information in large textual databases

Years

Languages

  • e 85
  • d 11
  • chi 1
  • More… Less…

Types

  • a 93
  • m 2
  • el 1
  • r 1
  • s 1
  • More… Less…