Search (26 results, page 1 of 2)

  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Zhitomirsky-Geffet, M.; Prebor, G.; Bloch, O.: Improving proverb search and retrieval with a generic multidimensional ontology (2017) 0.07
    0.06982846 = product of:
      0.13965692 = sum of:
        0.03490599 = weight(_text_:web in 3320) [ClassicSimilarity], result of:
          0.03490599 = score(doc=3320,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 3320, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3320)
        0.104750924 = weight(_text_:search in 3320) [ClassicSimilarity], result of:
          0.104750924 = score(doc=3320,freq=14.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.6095997 = fieldWeight in 3320, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3320)
      0.5 = coord(2/4)
    
    Abstract
    The goal of this research is to develop a generic ontological model for proverbs that unifies potential classification criteria and various characteristics of proverbs to enable their effective retrieval and large-scale analysis. Because proverbs can be described and indexed by multiple characteristics and criteria, we built a multidimensional ontology suitable for proverb classification. To evaluate the effectiveness of the constructed ontology for improving search and retrieval of proverbs, a large-scale user experiment was arranged with 70 users who were asked to search a proverb repository using ontology-based and free-text search interfaces. The comparative analysis of the results shows that the use of this ontology helped to substantially improve the search recall, precision, user satisfaction, and efficiency and to minimize user effort during the search process. A practical contribution of this work is an automated web-based proverb search and retrieval system which incorporates the proposed ontological scheme and an initial corpus of ontology-based annotated proverbs.
  2. Kajanan, S.; Bao, Y.; Datta, A.; VanderMeer, D.; Dutta, K.: Efficient automatic search query formulation using phrase-level analysis (2014) 0.06
    0.0613487 = product of:
      0.1226974 = sum of:
        0.0914341 = weight(_text_:search in 1264) [ClassicSimilarity], result of:
          0.0914341 = score(doc=1264,freq=24.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.5321022 = fieldWeight in 1264, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=1264)
        0.031263296 = product of:
          0.06252659 = sum of:
            0.06252659 = weight(_text_:engine in 1264) [ClassicSimilarity], result of:
              0.06252659 = score(doc=1264,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23641664 = fieldWeight in 1264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1264)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Over the past decade, the volume of information available digitally over the Internet has grown enormously. Technical developments in the area of search, such as Google's Page Rank algorithm, have proved so good at serving relevant results that Internet search has become integrated into daily human activity. One can endlessly explore topics of interest simply by querying and reading through the resulting links. Yet, although search engines are well known for providing relevant results based on users' queries, users do not always receive the results they are looking for. Google's Director of Research describes clickstream evidence of frustrated users repeatedly reformulating queries and searching through page after page of results. Given the general quality of search engine results, one must consider the possibility that the frustrated user's query is not effective; that is, it does not describe the essence of the user's interest. Indeed, extensive research into human search behavior has found that humans are not very effective at formulating good search queries that describe what they are interested in. Ideally, the user should simply point to a portion of text that sparked the user's interest, and a system should automatically formulate a search query that captures the essence of the text. In this paper, we describe an implemented system that provides this capability. We first describe how our work differs from existing work in automatic query formulation, and propose a new method for improved quantification of the relevance of candidate search terms drawn from input text using phrase-level analysis. We then propose an implementable method designed to provide relevant queries based on a user's text input. We demonstrate the quality of our results and performance of our system through experimental studies. Our results demonstrate that our system produces relevant search terms with roughly two-thirds precision and recall compared to search terms selected by experts, and that typical users find significantly more relevant results (31% more relevant) more quickly (64% faster) using our system than self-formulated search queries. Further, we show that our implementation can scale to request loads of up to 10 requests per second within current online responsiveness expectations (<2-second response times at the highest loads tested).
  3. Stankovic, R. et al.: Indexing of textual databases based on lexical resources : a case study for Serbian (2016) 0.05
    0.049739346 = product of:
      0.09947869 = sum of:
        0.06598687 = weight(_text_:search in 2759) [ClassicSimilarity], result of:
          0.06598687 = score(doc=2759,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3840117 = fieldWeight in 2759, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.078125 = fieldNorm(doc=2759)
        0.03349182 = product of:
          0.06698364 = sum of:
            0.06698364 = weight(_text_:22 in 2759) [ClassicSimilarity], result of:
              0.06698364 = score(doc=2759,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.38690117 = fieldWeight in 2759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2759)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
  4. Smiraglia, R.P.; Cai, X.: Tracking the evolution of clustering, machine learning, automatic indexing and automatic classification in knowledge organization (2017) 0.03
    0.03104088 = product of:
      0.06208176 = sum of:
        0.029088326 = weight(_text_:web in 3627) [ClassicSimilarity], result of:
          0.029088326 = score(doc=3627,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 3627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3627)
        0.032993436 = weight(_text_:search in 3627) [ClassicSimilarity], result of:
          0.032993436 = score(doc=3627,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 3627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3627)
      0.5 = coord(2/4)
    
    Abstract
    A very important extension of the traditional domain of knowledge organization (KO) arises from attempts to incorporate techniques devised in the computer science domain for automatic concept extraction and for grouping, categorizing, clustering and otherwise organizing knowledge using mechanical means. Four specific terms have emerged to identify the most prevalent techniques: machine learning, clustering, automatic indexing, and automatic classification. Our study presents three domain analytical case analyses in search of answers. The first case relies on citations located using the ISKO-supported "Knowledge Organization Bibliography." The second case relies on works in both Web of Science and SCOPUS. Case three applies co-word analysis and citation analysis to the contents of the papers in the present special issue. We observe scholars involved in "clustering" and "automatic classification" who share common thematic emphases. But we have found no coherence, no common activity and no social semantics. We have not found a research front, or a common teleology within the KO domain. We also have found a lively group of authors who have succeeded in submitting papers to this special issue, and their work quite interestingly aligns with the case studies we report. There is an emphasis on KO for information retrieval; there is much work on clustering (which involves conceptual points within texts) and automatic classification (which involves semantic groupings at the meta-document level).
  5. Fauzi, F.; Belkhatir, M.: Multifaceted conceptual image indexing on the world wide web (2013) 0.02
    0.015114739 = product of:
      0.060458954 = sum of:
        0.060458954 = weight(_text_:web in 2721) [ClassicSimilarity], result of:
          0.060458954 = score(doc=2721,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.37471575 = fieldWeight in 2721, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2721)
      0.25 = coord(1/4)
    
    Abstract
    In this paper, we describe a user-centered design of an automated multifaceted concept-based indexing framework which analyzes the semantics of the Web image contextual information and classifies it into five broad semantic concept facets: signal, object, abstract, scene, and relational; and identifies the semantic relationships between the concepts. An important aspect of our indexing model is that it relates to the users' levels of image descriptions. Also, a major contribution relies on the fact that the classification is performed automatically with the raw image contextual information extracted from any general webpage and is not solely based on image tags like state-of-the-art solutions. Human Language Technology techniques and an external knowledge base are used to analyze the information both syntactically and semantically. Experimental results on a human-annotated Web image collection and corresponding contextual information indicate that our method outperforms empirical frameworks employing tf-idf and location-based tf-idf weighting schemes as well as n-gram indexing in a recall/precision based evaluation framework.
  6. Strobel, S.; Marín-Arraiza, P.: Metadata for scientific audiovisual media : current practices and perspectives of the TIB / AV-portal (2015) 0.01
    0.014286577 = product of:
      0.057146307 = sum of:
        0.057146307 = weight(_text_:search in 3667) [ClassicSimilarity], result of:
          0.057146307 = score(doc=3667,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.33256388 = fieldWeight in 3667, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3667)
      0.25 = coord(1/4)
    
    Abstract
    Descriptive metadata play a key role in finding relevant search results in large amounts of unstructured data. However, current scientific audiovisual media are provided with little metadata, which makes them hard to find, let alone individual sequences. In this paper, the TIB / AV-Portal is presented as a use case where methods concerning the automatic generation of metadata, a semantic search and cross-lingual retrieval (German/English) have already been applied. These methods result in a better discoverability of the scientific audiovisual media hosted in the portal. Text, speech, and image content of the video are automatically indexed by specialised GND (Gemeinsame Normdatei) subject headings. A semantic search is established based on properties of the GND ontology. The cross-lingual retrieval uses English 'translations' that were derived by an ontology mapping (DBpedia i. a.). Further ways of increasing the discoverability and reuse of the metadata are publishing them as Linked Open Data and interlinking them with other data sets.
  7. Blank, I.; Rokach, L.; Shani, G.: Leveraging metadata to recommend keywords for academic papers (2016) 0.01
    0.011664942 = product of:
      0.046659768 = sum of:
        0.046659768 = weight(_text_:search in 3232) [ClassicSimilarity], result of:
          0.046659768 = score(doc=3232,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 3232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3232)
      0.25 = coord(1/4)
    
    Abstract
    Users of research databases, such as CiteSeerX, Google Scholar, and Microsoft Academic, often search for papers using a set of keywords. Unfortunately, many authors avoid listing sufficient keywords for their papers. As such, these applications may need to automatically associate good descriptive keywords with papers. When the full text of the paper is available this problem has been thoroughly studied. In many cases, however, due to copyright limitations, research databases do not have access to the full text. On the other hand, such databases typically maintain metadata, such as the title and abstract and the citation network of each paper. In this paper we study the problem of predicting which keywords are appropriate for a research paper, using different methods based on the citation network and available metadata. Our main goal is in providing search engines with the ability to extract keywords from the available metadata. However, our system can also be used for other applications, such as for recommending keywords for the authors of new papers. We create a data set of research papers, and their citation network, keywords, and other metadata, containing over 470K papers with and more than 2 million keywords. We compare our methods with predicting keywords using the title and abstract, in offline experiments and in a user study, concluding that the citation network provides much better predictions.
  8. Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2012) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 1717) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1717,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1717)
      0.25 = coord(1/4)
    
    Content
    Beitrag für die Tagung: Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn. Vgl.: http://http://www.nlib.ee/index.php?id=17763.
  9. Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2014) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 1969) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1969,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1969, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1969)
      0.25 = coord(1/4)
    
    Footnote
    Contribution in a special issue "Beyond libraries: Subject metadata in the digital environment and Semantic Web" - Enthält Beiträge der gleichnamigen IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn.
  10. Lichtenstein, A.; Plank, M.; Neumann, J.: TIB's portal for audiovisual media : combining manual and automatic indexing (2014) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 1981) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1981,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1981)
      0.25 = coord(1/4)
    
    Abstract
    The German National Library of Science and Technology (TIB) developed a Web-based platform for audiovisual media. The audiovisual portal optimizes access to scientific videos such as computer animations and lecture and conference recordings. TIB's AV-Portal combines traditional cataloging and automatic indexing of audiovisual media. The article describes metadata standards for audiovisual media and introduces the TIB's metadata schema in comparison to other metadata standards for non-textual materials. Additionally, we give an overview of multimedia retrieval technologies used for the Portal and present the AV-Portal in detail as well as the additional value for libraries and their users.
  11. Daudaravicius, V.: ¬A framework for keyphrase extraction from scientific journals (2016) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 2930) [ClassicSimilarity], result of:
          0.04072366 = score(doc=2930,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
      0.25 = coord(1/4)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  12. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
          0.04072366 = score(doc=2933,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
      0.25 = coord(1/4)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  13. Schulz, K.U.; Brunner, L.: Vollautomatische thematische Verschlagwortung großer Textkollektionen mittels semantischer Netze (2017) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 3493) [ClassicSimilarity], result of:
          0.04072366 = score(doc=3493,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 3493, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3493)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  14. Böhm, A.; Seifert, C.; Schlötterer, J.; Granitzer, M.: Identifying tweets from the economic domain (2017) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 3495) [ClassicSimilarity], result of:
          0.04072366 = score(doc=3495,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 3495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3495)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  15. Kempf, A.O.: Neue Verfahrenswege der Wissensorganisation : eine Evaluation automatischer Indexierung in der sozialwissenschaftlichen Fachinformation (2017) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 3497) [ClassicSimilarity], result of:
          0.04072366 = score(doc=3497,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 3497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3497)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  16. Hauer, M.: Tiefenindexierung im Bibliothekskatalog : 17 Jahre intelligentCAPTURE (2019) 0.01
    0.010047545 = product of:
      0.04019018 = sum of:
        0.04019018 = product of:
          0.08038036 = sum of:
            0.08038036 = weight(_text_:22 in 5629) [ClassicSimilarity], result of:
              0.08038036 = score(doc=5629,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.46428138 = fieldWeight in 5629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5629)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    B.I.T.online. 22(2019) H.2, S.163-166
  17. Benson, A.C.: Image descriptions and their relational expressions : a review of the literature and the issues (2015) 0.01
    0.00989803 = product of:
      0.03959212 = sum of:
        0.03959212 = weight(_text_:search in 1867) [ClassicSimilarity], result of:
          0.03959212 = score(doc=1867,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 1867, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1867)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this paper is to survey the treatment of relationships, relationship expressions and the ways in which they manifest themselves in image descriptions. Design/methodology/approach - The term "relationship" is construed in the broadest possible way to include spatial relationships ("to the right of"), temporal ("in 1936," "at noon"), meronymic ("part of"), and attributive ("has color," "has dimension"). The intentions of these vaguely delimited categories with image information, image creation, and description in libraries and archives is complex and in need of explanation. Findings - The review brings into question many generally held beliefs about the relationship problem such as the belief that the semantics of relationships are somehow embedded in the relationship term itself and that image search and retrieval solutions can be found through refinement of word-matching systems. Originality/value - This review has no hope of systematically examining all evidence in all disciplines pertaining to this topic. It instead focusses on a general description of a theoretical treatment in Library and Information Science.
  18. Ma, N.; Zheng, H.T.; Xiao, X.: ¬An ontology-based latent semantic indexing approach using long short-term memory networks (2017) 0.01
    0.0072720814 = product of:
      0.029088326 = sum of:
        0.029088326 = weight(_text_:web in 3810) [ClassicSimilarity], result of:
          0.029088326 = score(doc=3810,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
      0.25 = coord(1/4)
    
    Source
    Web and Big Data: First International Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7-9, 2017, Proceedings, Part I. Eds.: L. Chen et al
  19. Kasprzik, A.: Voraussetzungen und Anwendungspotentiale einer präzisen Sacherschließung aus Sicht der Wissenschaft (2018) 0.01
    0.005861068 = product of:
      0.023444273 = sum of:
        0.023444273 = product of:
          0.046888545 = sum of:
            0.046888545 = weight(_text_:22 in 5195) [ClassicSimilarity], result of:
              0.046888545 = score(doc=5195,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.2708308 = fieldWeight in 5195, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5195)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Große Aufmerksamkeit richtet sich im Moment auf das Potential von automatisierten Methoden in der Sacherschließung und deren Interaktionsmöglichkeiten mit intellektuellen Methoden. In diesem Kontext befasst sich der vorliegende Beitrag mit den folgenden Fragen: Was sind die Anforderungen an bibliothekarische Metadaten aus Sicht der Wissenschaft? Was wird gebraucht, um den Informationsbedarf der Fachcommunities zu bedienen? Und was bedeutet das entsprechend für die Automatisierung der Metadatenerstellung und -pflege? Dieser Beitrag fasst die von der Autorin eingenommene Position in einem Impulsvortrag und der Podiumsdiskussion beim Workshop der FAG "Erschließung und Informationsvermittlung" des GBV zusammen. Der Workshop fand im Rahmen der 22. Verbundkonferenz des GBV statt.
  20. Franke-Maier, M.: Anforderungen an die Qualität der Inhaltserschließung im Spannungsfeld von intellektuell und automatisch erzeugten Metadaten (2018) 0.01
    0.005861068 = product of:
      0.023444273 = sum of:
        0.023444273 = product of:
          0.046888545 = sum of:
            0.046888545 = weight(_text_:22 in 5344) [ClassicSimilarity], result of:
              0.046888545 = score(doc=5344,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.2708308 = fieldWeight in 5344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5344)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Spätestens seit dem Deutschen Bibliothekartag 2018 hat sich die Diskussion zu den automatischen Verfahren der Inhaltserschließung der Deutschen Nationalbibliothek von einer politisch geführten Diskussion in eine Qualitätsdiskussion verwandelt. Der folgende Beitrag beschäftigt sich mit Fragen der Qualität von Inhaltserschließung in digitalen Zeiten, wo heterogene Erzeugnisse unterschiedlicher Verfahren aufeinandertreffen und versucht, wichtige Anforderungen an Qualität zu definieren. Dieser Tagungsbeitrag fasst die vom Autor als Impulse vorgetragenen Ideen beim Workshop der FAG "Erschließung und Informationsvermittlung" des GBV am 29. August 2018 in Kiel zusammen. Der Workshop fand im Rahmen der 22. Verbundkonferenz des GBV statt.