Search (250 results, page 1 of 13)

  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"a"
  1. Ward, M.L.: ¬The future of the human indexer (1996) 0.04
    0.043612197 = product of:
      0.09812744 = sum of:
        0.016802425 = weight(_text_:of in 7244) [ClassicSimilarity], result of:
          0.016802425 = score(doc=7244,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 7244, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.0245278 = weight(_text_:systems in 7244) [ClassicSimilarity], result of:
          0.0245278 = score(doc=7244,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 7244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.040873505 = weight(_text_:software in 7244) [ClassicSimilarity], result of:
          0.040873505 = score(doc=7244,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 7244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 7244) [ClassicSimilarity], result of:
              0.031847417 = score(doc=7244,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 7244, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7244)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Considers the principles of indexing and the intellectual skills involved in order to determine what automatic indexing systems would be required in order to supplant or complement the human indexer. Good indexing requires: considerable prior knowledge of the literature; judgement as to what to index and what depth to index; reading skills; abstracting skills; and classification skills, Illustrates these features with a detailed description of abstracting and indexing processes involved in generating entries for the mechanical engineering database POWERLINK. Briefly assesses the possibility of replacing human indexers with specialist indexing software, with particular reference to the Object Analyzer from the InTEXT automatic indexing system and using the criteria described for human indexers. At present, it is unlikely that the automatic indexer will replace the human indexer, but when more primary texts are available in electronic form, it may be a useful productivity tool for dealing with large quantities of low grade texts (should they be wanted in the database)
    Date
    9. 2.1997 18:44:22
    Source
    Journal of librarianship and information science. 28(1996) no.4, S.217-225
  2. Milstead, J.L.: Thesauri in a full-text world (1998) 0.04
    0.041063324 = product of:
      0.092392474 = sum of:
        0.041947264 = weight(_text_:applications in 2337) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2337,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.016735615 = weight(_text_:of in 2337) [ClassicSimilarity], result of:
          0.016735615 = score(doc=2337,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 2337, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.020439833 = weight(_text_:systems in 2337) [ClassicSimilarity], result of:
          0.020439833 = score(doc=2337,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 2337) [ClassicSimilarity], result of:
              0.026539518 = score(doc=2337,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 2337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2337)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Despite early claims to the contemporary, thesauri continue to find use as access tools for information in the full-text environment. Their mode of use is changing, but this change actually represents an expansion rather than a contrdiction of their utility. Thesauri and similar vocabulary tools can complement full-text access by aiding users in focusing their searches, by supplementing the linguistic analysis of the text search engine, and even by serving as one of the tools used by the linguistic engine for its analysis. While human indexing contunues to be used for many databases, the trend is to increase the use of machine aids for this purpose. All machine-aided indexing (MAI) systems rely on thesauri as the basis for term selection. In the 21st century, the balance of effort between human and machine will change at both input and output, but thesauri will continue to play an important role for the foreseeable future
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  3. Smart, G.: Using language analysis to manage information (1993) 0.04
    0.037574366 = product of:
      0.1127231 = sum of:
        0.011975031 = weight(_text_:of in 4423) [ClassicSimilarity], result of:
          0.011975031 = score(doc=4423,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 4423, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
        0.046250064 = weight(_text_:systems in 4423) [ClassicSimilarity], result of:
          0.046250064 = score(doc=4423,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 4423, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
        0.054498006 = weight(_text_:software in 4423) [ClassicSimilarity], result of:
          0.054498006 = score(doc=4423,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 4423, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
      0.33333334 = coord(3/9)
    
    Abstract
    The ESPRIT project SIMPR developed software to analyse documents and generate indexes for them. Of immediate application as a document indexing and classification system, this also offers a technology for information modelling that has broader implications, supporting many new uses for information management softeware. The project was based on the assumption that information can only be managed successfully by computer systems that can view the information contained in a document through the language in which the document is written, and that systems need to be sufficiently flexible to respond to the changing requirements of document use
  4. Greiner-Petter, A.; Schubotz, M.; Cohl, H.S.; Gipp, B.: Semantic preserving bijective mappings for expressions involving special functions between computer algebra systems and document preparation systems (2019) 0.04
    0.03700888 = product of:
      0.08326998 = sum of:
        0.012701438 = weight(_text_:of in 5499) [ClassicSimilarity], result of:
          0.012701438 = score(doc=5499,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732687 = fieldWeight in 5499, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.03270373 = weight(_text_:systems in 5499) [ClassicSimilarity], result of:
          0.03270373 = score(doc=5499,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 5499, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.027249003 = weight(_text_:software in 5499) [ClassicSimilarity], result of:
          0.027249003 = score(doc=5499,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 5499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.010615807 = product of:
          0.021231614 = sum of:
            0.021231614 = weight(_text_:22 in 5499) [ClassicSimilarity], result of:
              0.021231614 = score(doc=5499,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.15476047 = fieldWeight in 5499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5499)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Purpose Modern mathematicians and scientists of math-related disciplines often use Document Preparation Systems (DPS) to write and Computer Algebra Systems (CAS) to calculate mathematical expressions. Usually, they translate the expressions manually between DPS and CAS. This process is time-consuming and error-prone. The purpose of this paper is to automate this translation. This paper uses Maple and Mathematica as the CAS, and LaTeX as the DPS. Design/methodology/approach Bruce Miller at the National Institute of Standards and Technology (NIST) developed a collection of special LaTeX macros that create links from mathematical symbols to their definitions in the NIST Digital Library of Mathematical Functions (DLMF). The authors are using these macros to perform rule-based translations between the formulae in the DLMF and CAS. Moreover, the authors develop software to ease the creation of new rules and to discover inconsistencies. Findings The authors created 396 mappings and translated 58.8 percent of DLMF formulae (2,405 expressions) successfully between Maple and DLMF. For a significant percentage, the special function definitions in Maple and the DLMF were different. An atomic symbol in one system maps to a composite expression in the other system. The translator was also successfully used for automatic verification of mathematical online compendia and CAS. The evaluation techniques discovered two errors in the DLMF and one defect in Maple. Originality/value This paper introduces the first translation tool for special functions between LaTeX and CAS. The approach improves error-prone manual translations and can be used to verify mathematical online compendia and CAS.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 71(2019) no.3, S.415-439
  5. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.03
    0.029196393 = product of:
      0.087589175 = sum of:
        0.041947264 = weight(_text_:applications in 601) [ClassicSimilarity], result of:
          0.041947264 = score(doc=601,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.016735615 = weight(_text_:of in 601) [ClassicSimilarity], result of:
          0.016735615 = score(doc=601,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 601, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.02890629 = weight(_text_:systems in 601) [ClassicSimilarity], result of:
          0.02890629 = score(doc=601,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 601, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
      0.33333334 = coord(3/9)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.653-677
  6. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.03
    0.028607449 = product of:
      0.085822344 = sum of:
        0.041947264 = weight(_text_:applications in 3300) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3300,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.014968789 = weight(_text_:of in 3300) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3300,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3300, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.02890629 = weight(_text_:systems in 3300) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3300,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3300, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
      0.33333334 = coord(3/9)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.12, S.2530-2539
  7. Golub, K.; Soergel, D.; Buchanan, G.; Tudhope, D.; Lykke, M.; Hiom, D.: ¬A framework for evaluating automatic indexing or classification in the context of retrieval (2016) 0.02
    0.023156626 = product of:
      0.06946988 = sum of:
        0.014968789 = weight(_text_:of in 3311) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3311,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3311, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.020439833 = weight(_text_:systems in 3311) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3311,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.034061253 = weight(_text_:software in 3311) [ClassicSimilarity], result of:
          0.034061253 = score(doc=3311,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
      0.33333334 = coord(3/9)
    
    Abstract
    Tools for automatic subject assignment help deal with scale and sustainability in creating and enriching metadata, establishing more connections across and between resources and enhancing consistency. Although some software vendors and experimental researchers claim the tools can replace manual subject indexing, hard scientific evidence of their performance in operating information environments is scarce. A major reason for this is that research is usually conducted in laboratory conditions, excluding the complexities of real-life systems and situations. The article reviews and discusses issues with existing evaluation approaches such as problems of aboutness and relevance assessments, implying the need to use more than a single "gold standard" method when evaluating indexing and retrieval, and proposes a comprehensive evaluation framework. The framework is informed by a systematic review of the literature on evaluation approaches: evaluating indexing quality directly through assessment by an evaluator or through comparison with a gold standard, evaluating the quality of computer-assisted indexing directly in the context of an indexing workflow, and evaluating indexing quality indirectly through analyzing retrieval performance.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.3-16
  8. Witschel, H.F.: Terminology extraction and automatic indexing : comparison and qualitative evaluation of methods (2005) 0.02
    0.021405008 = product of:
      0.09632254 = sum of:
        0.0726548 = weight(_text_:applications in 1842) [ClassicSimilarity], result of:
          0.0726548 = score(doc=1842,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.42124623 = fieldWeight in 1842, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1842)
        0.023667734 = weight(_text_:of in 1842) [ClassicSimilarity], result of:
          0.023667734 = score(doc=1842,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 1842, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1842)
      0.22222222 = coord(2/9)
    
    Abstract
    Many terminology engineering processes involve the task of automatic terminology extraction: before the terminology of a given domain can be modelled, organised or standardised, important concepts (or terms) of this domain have to be identified and fed into terminological databases. These serve in further steps as a starting point for compiling dictionaries, thesauri or maybe even terminological ontologies for the domain. For the extraction of the initial concepts, extraction methods are needed that operate on specialised language texts. On the other hand, many machine learning or information retrieval applications require automatic indexing techniques. In Machine Learning applications concerned with the automatic clustering or classification of texts, often feature vectors are needed that describe the contents of a given text briefly but meaningfully. These feature vectors typically consist of a fairly small set of index terms together with weights indicating their importance. Short but meaningful descriptions of document contents as provided by good index terms are also useful to humans: some knowledge management applications (e.g. topic maps) use them as a set of basic concepts (topics). The author believes that the tasks of terminology extraction and automatic indexing have much in common and can thus benefit from the same set of basic algorithms. It is the goal of this paper to outline some methods that may be used in both contexts, but also to find the discriminating factors between the two tasks that call for the variation of parameters or application of different techniques. The discussion of these methods will be based on statistical, syntactical and especially morphological properties of (index) terms. The paper is concluded by the presentation of some qualitative and quantitative results comparing statistical and morphological methods.
    Source
    TKE 2005: Proc. of Terminology and Knowledge Engineering (TKE) 2005
  9. Chowdhury, G.G.: Natural language processing and information retrieval : pt.1: basic issues; pt.2: major applications (1991) 0.02
    0.020995347 = product of:
      0.09447906 = sum of:
        0.08389453 = weight(_text_:applications in 3313) [ClassicSimilarity], result of:
          0.08389453 = score(doc=3313,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 3313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
        0.010584532 = weight(_text_:of in 3313) [ClassicSimilarity], result of:
          0.010584532 = score(doc=3313,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 3313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
      0.22222222 = coord(2/9)
    
    Abstract
    Reviews the basic issues and procedures involved in natural language processing of textual material for final use in information retrieval. Covers: natural language processing; natural language understanding; syntactic and semantic analysis; parsing; knowledge bases and knowledge representation
  10. Hlava, M.M.K.: Automatic indexing : comparing rule-based and statistics-based indexing systems (2005) 0.02
    0.020974858 = product of:
      0.09438686 = sum of:
        0.057231534 = weight(_text_:systems in 6265) [ClassicSimilarity], result of:
          0.057231534 = score(doc=6265,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 6265, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=6265)
        0.037155323 = product of:
          0.074310645 = sum of:
            0.074310645 = weight(_text_:22 in 6265) [ClassicSimilarity], result of:
              0.074310645 = score(doc=6265,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5416616 = fieldWeight in 6265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6265)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Source
    Information outlook. 9(2005) no.8, S.22-23
  11. Hlava, M.M.K.: Machine aided indexing (MAI) in a multilingual environment (1993) 0.02
    0.020682735 = product of:
      0.09307231 = sum of:
        0.010478153 = weight(_text_:of in 7405) [ClassicSimilarity], result of:
          0.010478153 = score(doc=7405,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 7405, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7405)
        0.082594156 = weight(_text_:software in 7405) [ClassicSimilarity], result of:
          0.082594156 = score(doc=7405,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.53142565 = fieldWeight in 7405, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7405)
      0.22222222 = coord(2/9)
    
    Abstract
    The machine aided indexing (MAI) software devloped by Access Innovations, Inc., is a semantic based, Boolean statement, rule interpreting application with 3 modules: the MA engine which accepts input files, matches terms in the knowledge base, interprets rules, and outputs a text file with suggested indexing terms; a rule building application allowing each Boolean style rule in the knowledge base to be created or modifies; and a statistical computation module which analyzes performance of the MA software against text manually indexed by professional human indexers. The MA software can be applied across multiple languages and can be used where the text to be searched is in one language and the indexes to be output are in another
    Source
    Proceedings of the 14th National Online Meeting 1993, New York, 4-6 May 1993. Ed.: M.E. Williams
  12. Milstead, J.L.: Methodologies for subject analysis in bibliographic databases (1992) 0.02
    0.019753601 = product of:
      0.08889121 = sum of:
        0.016567415 = weight(_text_:of in 2311) [ClassicSimilarity], result of:
          0.016567415 = score(doc=2311,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 2311, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2311)
        0.07232379 = product of:
          0.14464758 = sum of:
            0.14464758 = weight(_text_:packages in 2311) [ClassicSimilarity], result of:
              0.14464758 = score(doc=2311,freq=2.0), product of:
                0.2706874 = queryWeight, product of:
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5343713 = fieldWeight in 2311, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2311)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The goal of the study was to determine the state of the art of subject analysis as applied to large bibliographic data bases. The intent was to gather and evaluate information, casting it in a form that could be applied by management. There was no attempt to determine actual costs or trade-offs among costs and possible benefits. Commercial automatic indexing packages were also reviewed. The overall conclusion was that data base producers should begin working seriously on upgrading their thesauri and codifying their indexing policies as a means of moving toward development of machine aids to indexing, but that fully automatic indexing is not yet ready for wholesale implementation
  13. Alexander, M.: Retrieving digital data with fuzzy matching (1997) 0.02
    0.019523773 = product of:
      0.08785698 = sum of:
        0.06711562 = weight(_text_:applications in 151) [ClassicSimilarity], result of:
          0.06711562 = score(doc=151,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 151, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=151)
        0.020741362 = weight(_text_:of in 151) [ClassicSimilarity], result of:
          0.020741362 = score(doc=151,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 151, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=151)
      0.22222222 = coord(2/9)
    
    Abstract
    In 1993 the British Library established a programme of activities entitled Initiatives for Access (IFA) to identify and develop computer applications based on the new technologies emerging in the aereas of digital and network service. Discusses the problem of the effective retrieval of digital data after its capture focusing on the product Excalibur EFS which looks at the way information is sorted at its fundamental level and identifies patterns in numbers. Looks at the benefits of Excalibur and outlines other experiments in progress as part of the IFA programme
  14. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.02
    0.019223861 = product of:
      0.05767158 = sum of:
        0.010478153 = weight(_text_:of in 2673) [ClassicSimilarity], result of:
          0.010478153 = score(doc=2673,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 2673, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.028615767 = weight(_text_:systems in 2673) [ClassicSimilarity], result of:
          0.028615767 = score(doc=2673,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 2673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2673,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
    Source
    Computer networks and ISDN systems. 29(1997) no.8, S.1147-1156
  15. Pritchard, J.: Information retrieval : smarter indexing (1991) 0.02
    0.019212324 = product of:
      0.08645546 = sum of:
        0.018332949 = weight(_text_:of in 4890) [ClassicSimilarity], result of:
          0.018332949 = score(doc=4890,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 4890, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=4890)
        0.068122506 = weight(_text_:software in 4890) [ClassicSimilarity], result of:
          0.068122506 = score(doc=4890,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43831247 = fieldWeight in 4890, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=4890)
      0.22222222 = coord(2/9)
    
    Abstract
    Describes full text retrieval (FTR) which indexes every occurrence of every word except defined 'stop' words. This permits much more sophisticated searching than with keyword indexing. Also discusses document imaging processing (DIP). Lists suppliers and users of the software and describes the experiences of ESOO's Planning Division with Computer Intertrade Ltd. (CIL) ImagePro DIP and their operational practices
  16. Salton, G.; Wong, A.: Generation and search of clustered files (1978) 0.02
    0.018298382 = product of:
      0.082342714 = sum of:
        0.016935252 = weight(_text_:of in 2411) [ClassicSimilarity], result of:
          0.016935252 = score(doc=2411,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27643585 = fieldWeight in 2411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=2411)
        0.06540746 = weight(_text_:systems in 2411) [ClassicSimilarity], result of:
          0.06540746 = score(doc=2411,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5432656 = fieldWeight in 2411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.125 = fieldNorm(doc=2411)
      0.22222222 = coord(2/9)
    
    Source
    ACM transactions on database systems. 3(1978) no.4, S.321-346
  17. Warner, A.J.: ¬A linguistic approach to the automated hierarchical organization of phrases (1990) 0.02
    0.017707217 = product of:
      0.07968248 = sum of:
        0.05872617 = weight(_text_:applications in 4902) [ClassicSimilarity], result of:
          0.05872617 = score(doc=4902,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 4902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4902)
        0.020956306 = weight(_text_:of in 4902) [ClassicSimilarity], result of:
          0.020956306 = score(doc=4902,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 4902, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4902)
      0.22222222 = coord(2/9)
    
    Abstract
    A linguistic analysis was carried out on 8 sets of phrases automatically selected from documents surrogates in mathematics. The purpose of this analysis was to derive an algorithm which would automatically generate a hierarchically organised arrangement of phrases for online display to the user. This would replace an alphabetical display and would be particularly useful in online browsing of large numbers of items. It is also the first step toward an automatic thesaurus generator
    Source
    ASIS'90: Information in the year 2000, from research to applications. Proc. of the 53rd Annual Meeting of the American Society for Information Science, Toronto, Canada, 4.-8.11.1990. Ed. by Diana Henderson
  18. Taylor, S.L.: Integrating natural language understanding with document structure analysis (1994) 0.02
    0.017406443 = product of:
      0.078329 = sum of:
        0.05872617 = weight(_text_:applications in 1794) [ClassicSimilarity], result of:
          0.05872617 = score(doc=1794,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 1794, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1794)
        0.01960283 = weight(_text_:of in 1794) [ClassicSimilarity], result of:
          0.01960283 = score(doc=1794,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 1794, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1794)
      0.22222222 = coord(2/9)
    
    Abstract
    Document understanding, the interpretation of a document from its image form, is a technology area which benefits greatly from the integration of natural language processing with image processing. Develops a prototype of an Intelligent Document Understanding System (IDUS) which employs several technologies: image processing, optical character recognition, document structure analysis and text understanding in a cooperative fashion. Discusses those areas of research during development of IDUS where it is found that the most benefit from the integration of natural language processing and image processing occured: document structure analysis, OCR correction, and text analysis. Discusses 2 applications which are supported by IDUS: text retrieval and automatic generation of hypertext links
  19. Thiel, T.J.: Automated indexing of information stored on optical disk electronic document image management systems (1994) 0.02
    0.017375076 = product of:
      0.07818784 = sum of:
        0.020956306 = weight(_text_:of in 1260) [ClassicSimilarity], result of:
          0.020956306 = score(doc=1260,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 1260, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=1260)
        0.057231534 = weight(_text_:systems in 1260) [ClassicSimilarity], result of:
          0.057231534 = score(doc=1260,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 1260, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=1260)
      0.22222222 = coord(2/9)
    
    Source
    Encyclopedia of library and information science. Vol.54, [=Suppl.17]
  20. Gödert, W.: Detecting multiword phrases in mathematical text corpora (2012) 0.02
    0.017089166 = product of:
      0.07690124 = sum of:
        0.022403233 = weight(_text_:of in 466) [ClassicSimilarity], result of:
          0.022403233 = score(doc=466,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 466, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=466)
        0.054498006 = weight(_text_:software in 466) [ClassicSimilarity], result of:
          0.054498006 = score(doc=466,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 466, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=466)
      0.22222222 = coord(2/9)
    
    Abstract
    We present an approach for detecting multiword phrases in mathematical text corpora. The method used is based on characteristic features of mathematical terminology. It makes use of a software tool named Lingo which allows to identify words by means of previously defined dictionaries for specific word classes as adjectives, personal names or nouns. The detection of multiword groups is done algorithmically. Possible advantages of the method for indexing and information retrieval and conclusions for applying dictionary-based methods of automatic indexing instead of stemming procedures are discussed.

Languages