Search (8 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Daudaravicius, V.: ¬A framework for keyphrase extraction from scientific journals (2016) 0.07
    0.074950635 = product of:
      0.14990127 = sum of:
        0.067437425 = weight(_text_:wide in 2930) [ClassicSimilarity], result of:
          0.067437425 = score(doc=2930,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
        0.036585998 = weight(_text_:web in 2930) [ClassicSimilarity], result of:
          0.036585998 = score(doc=2930,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
        0.04587784 = weight(_text_:computer in 2930) [ClassicSimilarity], result of:
          0.04587784 = score(doc=2930,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
      0.5 = coord(3/6)
    
    Abstract
    We present a framework for keyphrase extraction from scientific journals in diverse research fields. While journal articles are often provided with manually assigned keywords, it is not clear how to automatically extract keywords and measure their significance for a set of journal articles. We compare extracted keyphrases from journals in the fields of astrophysics, mathematics, physics, and computer science. We show that the presented statistics-based framework is able to demonstrate differences among journals, and that the extracted keyphrases can be used to represent journal or conference research topics, dynamics, and specificity.
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  2. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.03
    0.034674477 = product of:
      0.10402343 = sum of:
        0.067437425 = weight(_text_:wide in 2933) [ClassicSimilarity], result of:
          0.067437425 = score(doc=2933,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
        0.036585998 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
          0.036585998 = score(doc=2933,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
      0.33333334 = coord(2/6)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  3. Markoff, J.: Researchers announce advance in image-recognition software (2014) 0.03
    0.031281408 = product of:
      0.09384422 = sum of:
        0.043350488 = weight(_text_:computer in 1875) [ClassicSimilarity], result of:
          0.043350488 = score(doc=1875,freq=14.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.2670688 = fieldWeight in 1875, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1875)
        0.050493736 = product of:
          0.10098747 = sum of:
            0.10098747 = weight(_text_:programs in 1875) [ClassicSimilarity], result of:
              0.10098747 = score(doc=1875,freq=12.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.3922141 = fieldWeight in 1875, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1875)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Content
    "Until now, so-called computer vision has largely been limited to recognizing individual objects. The new software, described on Monday by researchers at Google and at Stanford University, teaches itself to identify entire scenes: a group of young men playing Frisbee, for example, or a herd of elephants marching on a grassy plain. The software then writes a caption in English describing the picture. Compared with human observations, the researchers found, the computer-written descriptions are surprisingly accurate. The advances may make it possible to better catalog and search for the billions of images and hours of video available online, which are often poorly described and archived. At the moment, search engines like Google rely largely on written language accompanying an image or video to ascertain what it contains. "I consider the pixel data in images and video to be the dark matter of the Internet," said Fei-Fei Li, director of the Stanford Artificial Intelligence Laboratory, who led the research with Andrej Karpathy, a graduate student. "We are now starting to illuminate it." Dr. Li and Mr. Karpathy published their research as a Stanford University technical report. The Google team published their paper on arXiv.org, an open source site hosted by Cornell University.
    In the longer term, the new research may lead to technology that helps the blind and robots navigate natural environments. But it also raises chilling possibilities for surveillance. During the past 15 years, video cameras have been placed in a vast number of public and private spaces. In the future, the software operating the cameras will not only be able to identify particular humans via facial recognition, experts say, but also identify certain types of behavior, perhaps even automatically alerting authorities. Two years ago Google researchers created image-recognition software and presented it with 10 million images taken from YouTube videos. Without human guidance, the program trained itself to recognize cats - a testament to the number of cat videos on YouTube. Current artificial intelligence programs in new cars already can identify pedestrians and bicyclists from cameras positioned atop the windshield and can stop the car automatically if the driver does not take action to avoid a collision. But "just single object recognition is not very beneficial," said Ali Farhadi, a computer scientist at the University of Washington who has published research on software that generates sentences from digital pictures. "We've focused on objects, and we've ignored verbs," he said, adding that these programs do not grasp what is going on in an image. Both the Google and Stanford groups tackled the problem by refining software programs known as neural networks, inspired by our understanding of how the brain works. Neural networks can "train" themselves to discover similarities and patterns in data, even when their human creators do not know the patterns exist.
    In living organisms, webs of neurons in the brain vastly outperform even the best computer-based networks in perception and pattern recognition. But by adopting some of the same architecture, computers are catching up, learning to identify patterns in speech and imagery with increasing accuracy. The advances are apparent to consumers who use Apple's Siri personal assistant, for example, or Google's image search. Both groups of researchers employed similar approaches, weaving together two types of neural networks, one focused on recognizing images and the other on human language. In both cases the researchers trained the software with relatively small sets of digital images that had been annotated with descriptive sentences by humans. After the software programs "learned" to see patterns in the pictures and description, the researchers turned them on previously unseen images. The programs were able to identify objects and actions with roughly double the accuracy of earlier efforts, although still nowhere near human perception capabilities. "I was amazed that even with the small amount of training data that we were able to do so well," said Oriol Vinyals, a Google computer scientist who wrote the paper with Alexander Toshev, Samy Bengio and Dumitru Erhan, members of the Google Brain project. "The field is just starting, and we will see a lot of increases."
    Computer vision specialists said that despite the improvements, these software systems had made only limited progress toward the goal of digitally duplicating human vision and, even more elusive, understanding. "I don't know that I would say this is 'understanding' in the sense we want," said John R. Smith, a senior manager at I.B.M.'s T.J. Watson Research Center in Yorktown Heights, N.Y. "I think even the ability to generate language here is very limited." But the Google and Stanford teams said that they expect to see significant increases in accuracy as they improve their software and train these programs with larger sets of annotated images. A research group led by Tamara L. Berg, a computer scientist at the University of North Carolina at Chapel Hill, is training a neural network with one million images annotated by humans. "You're trying to tell the story behind the image," she said. "A natural scene will be very complex, and you want to pick out the most important objects in the image.""
  4. Husevag, A.-S.R.: Named entities in indexing : a case study of TV subtitles and metadata records (2016) 0.01
    0.009717524 = product of:
      0.058305144 = sum of:
        0.058305144 = product of:
          0.11661029 = sum of:
            0.11661029 = weight(_text_:programs in 3105) [ClassicSimilarity], result of:
              0.11661029 = score(doc=3105,freq=4.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.45288983 = fieldWeight in 3105, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3105)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper explores the possible role of named entities in an automatic index-ing process, based on text in subtitles. This is done by analyzing entity types, name den-sity and name frequencies in subtitles and metadata records from different TV programs. The name density in metadata records is much higher than the name density in subtitles, and named entities with high frequencies in the subtitles are more likely to be mentioned in the metadata records. Personal names, geographical names and names of organizations where the most prominent entity types in both the news subtitles and news metadata, while persons, works and locations are the most prominent in culture programs.
  5. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D.: Show and tell : a neural image caption generator (2014) 0.01
    0.007723937 = product of:
      0.04634362 = sum of:
        0.04634362 = weight(_text_:computer in 1869) [ClassicSimilarity], result of:
          0.04634362 = score(doc=1869,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28550854 = fieldWeight in 1869, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1869)
      0.16666667 = coord(1/6)
    
    Abstract
    Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. For instance, while the current state-of-the-art BLEU-1 score (the higher the better) on the Pascal dataset is 25, our approach yields 59, to be compared to human performance around 69. We also show BLEU-1 score improvements on Flickr30k, from 56 to 66, and on SBU, from 19 to 28. Lastly, on the newly released COCO dataset, we achieve a BLEU-4 of 27.7, which is the current state-of-the-art.
  6. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D.: ¬A picture is worth a thousand (coherent) words : building a natural description of images (2014) 0.01
    0.0066218963 = product of:
      0.039731376 = sum of:
        0.039731376 = weight(_text_:computer in 1874) [ClassicSimilarity], result of:
          0.039731376 = score(doc=1874,freq=6.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24477258 = fieldWeight in 1874, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1874)
      0.16666667 = coord(1/6)
    
    Content
    "People can summarize a complex scene in a few words without thinking twice. It's much more difficult for computers. But we've just gotten a bit closer -- we've developed a machine-learning system that can automatically produce captions (like the three above) to accurately describe images the first time it sees them. This kind of system could eventually help visually impaired people understand pictures, provide alternate text for images in parts of the world where mobile connections are slow, and make it easier for everyone to search on Google for images. Recent research has greatly improved object detection, classification, and labeling. But accurately describing a complex scene requires a deeper representation of what's going on in the scene, capturing how the various objects relate to one another and translating it all into natural-sounding language. Many efforts to construct computer-generated natural descriptions of images propose combining current state-of-the-art techniques in both computer vision and natural language processing to form a complete image description approach. But what if we instead merged recent computer vision and language models into a single jointly trained system, taking an image and directly producing a human readable sequence of words to describe it? This idea comes from recent advances in machine translation between languages, where a Recurrent Neural Network (RNN) transforms, say, a French sentence into a vector representation, and a second RNN uses that vector representation to generate a target sentence in German. Now, what if we replaced that first RNN and its input words with a deep Convolutional Neural Network (CNN) trained to classify objects in images? Normally, the CNN's last layer is used in a final Softmax among known classes of objects, assigning a probability that each object might be in the image. But if we remove that final layer, we can instead feed the CNN's rich encoding of the image into a RNN designed to produce phrases. We can then train the whole system directly on images and their captions, so it maximizes the likelihood that descriptions it produces best match the training descriptions for each image.
  7. Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2012) 0.01
    0.0060976665 = product of:
      0.036585998 = sum of:
        0.036585998 = weight(_text_:web in 1717) [ClassicSimilarity], result of:
          0.036585998 = score(doc=1717,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 1717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1717)
      0.16666667 = coord(1/6)
    
    Content
    Beitrag für die Tagung: Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn. Vgl.: http://http://www.nlib.ee/index.php?id=17763.
  8. Junger, U.; Schwens, U.: ¬Die inhaltliche Erschließung des schriftlichen kulturellen Erbes auf dem Weg in die Zukunft : Automatische Vergabe von Schlagwörtern in der Deutschen Nationalbibliothek (2017) 0.00
    0.0025074114 = product of:
      0.0150444675 = sum of:
        0.0150444675 = product of:
          0.030088935 = sum of:
            0.030088935 = weight(_text_:22 in 3780) [ClassicSimilarity], result of:
              0.030088935 = score(doc=3780,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.19345059 = fieldWeight in 3780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3780)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    19. 8.2017 9:24:22