Search (158 results, page 1 of 8)

  • × theme_ss:"Automatisches Klassifizieren"
  • × type_ss:"a"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.11
    0.10836022 = sum of:
      0.08128187 = product of:
        0.24384561 = sum of:
          0.24384561 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.24384561 = score(doc=562,freq=2.0), product of:
              0.43387505 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.051176514 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.0062772194 = weight(_text_:in in 562) [ClassicSimilarity], result of:
        0.0062772194 = score(doc=562,freq=2.0), product of:
          0.069613084 = queryWeight, product of:
            1.3602545 = idf(docFreq=30841, maxDocs=44218)
            0.051176514 = queryNorm
          0.09017298 = fieldWeight in 562, product of:
            1.4142135 = tf(freq=2.0), with freq of:
              2.0 = termFreq=2.0
            1.3602545 = idf(docFreq=30841, maxDocs=44218)
            0.046875 = fieldNorm(doc=562)
      0.020801133 = product of:
        0.041602265 = sum of:
          0.041602265 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.041602265 = score(doc=562,freq=2.0), product of:
              0.17921144 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051176514 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Liu, R.-L.: ¬A passage extractor for classification of disease aspect information (2013) 0.07
    0.07274398 = product of:
      0.10911597 = sum of:
        0.011696909 = weight(_text_:in in 1107) [ClassicSimilarity], result of:
          0.011696909 = score(doc=1107,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.16802745 = fieldWeight in 1107, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1107)
        0.09741906 = sum of:
          0.0627505 = weight(_text_:education in 1107) [ClassicSimilarity], result of:
            0.0627505 = score(doc=1107,freq=2.0), product of:
              0.24110512 = queryWeight, product of:
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.051176514 = queryNorm
              0.260262 = fieldWeight in 1107, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1107)
          0.034668557 = weight(_text_:22 in 1107) [ClassicSimilarity], result of:
            0.034668557 = score(doc=1107,freq=2.0), product of:
              0.17921144 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051176514 = queryNorm
              0.19345059 = fieldWeight in 1107, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1107)
      0.6666667 = coord(2/3)
    
    Abstract
    Retrieval of disease information is often based on several key aspects such as etiology, diagnosis, treatment, prevention, and symptoms of diseases. Automatic identification of disease aspect information is thus essential. In this article, I model the aspect identification problem as a text classification (TC) problem in which a disease aspect corresponds to a category. The disease aspect classification problem poses two challenges to classifiers: (a) a medical text often contains information about multiple aspects of a disease and hence produces noise for the classifiers and (b) text classifiers often cannot extract the textual parts (i.e., passages) about the categories of interest. I thus develop a technique, PETC (Passage Extractor for Text Classification), that extracts passages (from medical texts) for the underlying text classifiers to classify. Case studies on thousands of Chinese and English medical texts show that PETC enhances a support vector machine (SVM) classifier in classifying disease aspect information. PETC also performs better than three state-of-the-art classifier enhancement techniques, including two passage extraction techniques for text classifiers and a technique that employs term proximity information to enhance text classifiers. The contribution is of significance to evidence-based medicine, health education, and healthcare decision support. PETC can be used in those application domains in which a text to be classified may have several parts about different categories.
    Date
    28.10.2013 19:22:57
  3. Yilmaz, T.; Ozcan, R.; Altingovde, I.S.; Ulusoy, Ö.: Improving educational web search for question-like queries through subject classification (2019) 0.04
    0.03655556 = product of:
      0.054833338 = sum of:
        0.010462033 = weight(_text_:in in 5041) [ClassicSimilarity], result of:
          0.010462033 = score(doc=5041,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 5041, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5041)
        0.044371307 = product of:
          0.088742614 = sum of:
            0.088742614 = weight(_text_:education in 5041) [ClassicSimilarity], result of:
              0.088742614 = score(doc=5041,freq=4.0), product of:
                0.24110512 = queryWeight, product of:
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.051176514 = queryNorm
                0.36806607 = fieldWeight in 5041, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5041)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Students use general web search engines as their primary source of research while trying to find answers to school-related questions. Although search engines are highly relevant for the general population, they may return results that are out of educational context. Another rising trend; social community question answering websites are the second choice for students who try to get answers from other peers online. We attempt discovering possible improvements in educational search by leveraging both of these information sources. For this purpose, we first implement a classifier for educational questions. This classifier is built by an ensemble method that employs several regular learning algorithms and retrieval based approaches that utilize external resources. We also build a query expander to facilitate classification. We further improve the classification using search engine results and obtain 83.5% accuracy. Although our work is entirely based on the Turkish language, the features could easily be mapped to other languages as well. In order to find out whether search engine ranking can be improved in the education domain using the classification model, we collect and label a set of query results retrieved from a general web search engine. We propose five ad-hoc methods to improve search ranking based on the idea that the query-document category relation is an indicator of relevance. We evaluate these methods for overall performance, varying query length and based on factoid and non-factoid queries. We show that some of the methods significantly improve the rankings in the education domain.
  4. HaCohen-Kerner, Y. et al.: Classification using various machine learning methods and combinations of key-phrases and visual features (2016) 0.03
    0.03008706 = product of:
      0.045130588 = sum of:
        0.010462033 = weight(_text_:in in 2748) [ClassicSimilarity], result of:
          0.010462033 = score(doc=2748,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 2748, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.078125 = fieldNorm(doc=2748)
        0.034668557 = product of:
          0.069337115 = sum of:
            0.069337115 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.069337115 = score(doc=2748,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.38690117 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    1. 2.2016 18:25:22
    Series
    Lecture notes in computer science ; 9398
  5. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.03
    0.025943225 = product of:
      0.038914837 = sum of:
        0.014646845 = weight(_text_:in in 5273) [ClassicSimilarity], result of:
          0.014646845 = score(doc=5273,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.21040362 = fieldWeight in 5273, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5273)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.04853598 = score(doc=5273,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In text categorization tasks, classification on some class hierarchies has better results than in cases without the hierarchy. Currently, because a large number of documents are divided into several subgroups in a hierarchy, we can appropriately use a hierarchical classification method. However, we have no systematic method to build a hierarchical classification system that performs well with large collections of practical data. In this article, we introduce a new evaluation scheme for internal node classifiers, which can be used effectively to develop a hierarchical classification system. We also show that our method for constructing the hierarchical classification system is very effective, especially for the task of constructing classifiers applied to hierarchy tree with a lot of levels.
    Date
    22. 7.2006 16:24:52
  6. Dubin, D.: Dimensions and discriminability (1998) 0.02
    0.023083251 = product of:
      0.034624875 = sum of:
        0.010356884 = weight(_text_:in in 2338) [ClassicSimilarity], result of:
          0.010356884 = score(doc=2338,freq=4.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14877784 = fieldWeight in 2338, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 2338) [ClassicSimilarity], result of:
              0.04853598 = score(doc=2338,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Visualization interfaces can improve subject access by highlighting the inclusion of document representation components in similarity and discrimination relationships. Within a set of retrieved documents, what kinds of groupings can index terms and subject headings make explicit? The role of controlled vocabulary in classifying search output is examined
    Date
    22. 9.1997 19:16:05
  7. Jenkins, C.: Automatic classification of Web resources using Java and Dewey Decimal Classification (1998) 0.02
    0.023083251 = product of:
      0.034624875 = sum of:
        0.010356884 = weight(_text_:in in 1673) [ClassicSimilarity], result of:
          0.010356884 = score(doc=1673,freq=4.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14877784 = fieldWeight in 1673, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 1673) [ClassicSimilarity], result of:
              0.04853598 = score(doc=1673,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 1673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1673)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Wolverhampton Web Library (WWLib) is a WWW search engine that provides access to UK based information. The experimental version developed in 1995, was a success but highlighted the need for a much higher degree of automation. An interesting feature of the experimental WWLib was that it organised information according to DDC. Discusses the advantages of classification and describes the automatic classifier that is being developed in Java as part of the new, fully automated WWLib
    Date
    1. 8.1996 22:08:06
  8. Pfeffer, M.: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen (2009) 0.02
    0.022237048 = product of:
      0.03335557 = sum of:
        0.012554439 = weight(_text_:in in 3051) [ClassicSimilarity], result of:
          0.012554439 = score(doc=3051,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.18034597 = fieldWeight in 3051, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3051)
        0.020801133 = product of:
          0.041602265 = sum of:
            0.041602265 = weight(_text_:22 in 3051) [ClassicSimilarity], result of:
              0.041602265 = score(doc=3051,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.23214069 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Klassifikation von bibliografischen Einheiten ist für einen systematischen Zugang zu den Beständen einer Bibliothek und deren Aufstellung unumgänglich. Bislang wurde diese Aufgabe von Fachexperten manuell erledigt, sei es individuell nach einer selbst entwickelten Systematik oder kooperativ nach einer gemeinsamen Systematik. In dieser Arbeit wird ein Verfahren zur Automatisierung des Klassifikationsvorgangs vorgestellt. Dabei kommt das Verfahren des fallbasierten Schließens zum Einsatz, das im Kontext der Forschung zur künstlichen Intelligenz entwickelt wurde. Das Verfahren liefert für jedes Werk, für das bibliografische Daten vorliegen, eine oder mehrere mögliche Klassifikationen. In Experimenten werden die Ergebnisse der automatischen Klassifikation mit der durch Fachexperten verglichen. Diese Experimente belegen die hohe Qualität der automatischen Klassifikation und dass das Verfahren geeignet ist, Fachexperten bei der Klassifikationsarbeit signifikant zu entlasten. Auch die nahezu vollständige Resystematisierung eines Bibliothekskataloges ist - mit gewissen Abstrichen - möglich.
    Date
    22. 8.2009 19:51:28
    Source
    Wissen bewegen - Bibliotheken in der Informationsgesellschaft / 97. Deutscher Bibliothekartag in Mannheim, 2008. Hrsg. von Ulrich Hohoff und Per Knudsen. Bearb. von Stefan Siebert
  9. Egbert, J.; Biber, D.; Davies, M.: Developing a bottom-up, user-based method of web register classification (2015) 0.02
    0.021115731 = product of:
      0.031673595 = sum of:
        0.010872464 = weight(_text_:in in 2158) [ClassicSimilarity], result of:
          0.010872464 = score(doc=2158,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.1561842 = fieldWeight in 2158, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2158)
        0.020801133 = product of:
          0.041602265 = sum of:
            0.041602265 = weight(_text_:22 in 2158) [ClassicSimilarity], result of:
              0.041602265 = score(doc=2158,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.23214069 = fieldWeight in 2158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2158)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper introduces a project to develop a reliable, cost-effective method for classifying Internet texts into register categories, and apply that approach to the analysis of a large corpus of web documents. To date, the project has proceeded in 2 key phases. First, we developed a bottom-up method for web register classification, asking end users of the web to utilize a decision-tree survey to code relevant situational characteristics of web documents, resulting in a bottom-up identification of register and subregister categories. We present details regarding the development and testing of this method through a series of 10 pilot studies. Then, in the second phase of our project we applied this procedure to a corpus of 53,000 web documents. An analysis of the results demonstrates the effectiveness of these methods for web register classification and provides a preliminary description of the types and distribution of registers on the web.
    Date
    4. 8.2015 19:22:04
  10. Bock, H.-H.: Datenanalyse zur Strukturierung und Ordnung von Information (1989) 0.02
    0.021060942 = product of:
      0.03159141 = sum of:
        0.0073234225 = weight(_text_:in in 141) [ClassicSimilarity], result of:
          0.0073234225 = score(doc=141,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.10520181 = fieldWeight in 141, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=141)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 141) [ClassicSimilarity], result of:
              0.04853598 = score(doc=141,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 141, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=141)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Aufgabe der Datenanalyse ist es, Daten zu ordnen, übersichtlich darzustellen, verborgene und natürlich Strukturen zu entdecken, die diesbezüglich wesentlichen Eigenschaften herauszukristallisieren und zweckmäßige Modelle zur Beschreibung von Daten aufzustellen. Es wird ein Einblick in die Methoden und Prinzipien der Datenanalyse vermittelt. Anhand typischer Beispiele wird gezeigt, welche Daten analysiert, welche Strukturen betrachtet, welche Darstellungs- bzw. Ordnungsmethoden verwendet, welche Zielsetzungen verfolgt und welche Bewertungskriterien dabei angewendet werden können. Diskutiert wird auch die angemessene Verwendung der unterschiedlichen Methoden, wobei auf die gefahr und Art von Fehlinterpretationen hingewiesen wird
    Pages
    S.1-22
  11. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.02
    0.020098401 = product of:
      0.0301476 = sum of:
        0.012813321 = weight(_text_:in in 2765) [ClassicSimilarity], result of:
          0.012813321 = score(doc=2765,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.18406484 = fieldWeight in 2765, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2765)
        0.017334279 = product of:
          0.034668557 = sum of:
            0.034668557 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.034668557 = score(doc=2765,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Passages can be hidden within a text to circumvent their disallowed transfer. Such release of compartmentalized information is of concern to all corporate and governmental organizations. Passage retrieval is well studied; we posit, however, that passage detection is not. Passage retrieval is the determination of the degree of relevance of blocks of text, namely passages, comprising a document. Rather than determining the relevance of a document in its entirety, passage retrieval determines the relevance of the individual passages. As such, modified traditional information-retrieval techniques compare terms found in user queries with the individual passages to determine a similarity score for passages of interest. In passage detection, passages are classified into predetermined categories. More often than not, passage detection techniques are deployed to detect hidden paragraphs in documents. That is, to hide information, documents are injected with hidden text into passages. Rather than matching query terms against passages to determine their relevance, using text-mining techniques, the passages are classified. Those documents with hidden passages are defined as infected. Thus, simply stated, passage retrieval is the search for passages relevant to a user query, while passage detection is the classification of passages. That is, in passage detection, passages are labeled with one or more categories from a set of predetermined categories. We present a keyword-based dynamic passage approach (KDP) and demonstrate that KDP outperforms statistically significantly (99% confidence) the other document-splitting approaches by 12% to 18% in the passage detection and passage category-prediction tasks. Furthermore, we evaluate the effects of the feature selection, passage length, ambiguous passages, and finally training-data category distribution on passage-detection accuracy.
    Date
    22. 3.2009 19:14:43
  12. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.02
    0.019785643 = product of:
      0.029678462 = sum of:
        0.0088773295 = weight(_text_:in in 2760) [ClassicSimilarity], result of:
          0.0088773295 = score(doc=2760,freq=4.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.12752387 = fieldWeight in 2760, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2760)
        0.020801133 = product of:
          0.041602265 = sum of:
            0.041602265 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.041602265 = score(doc=2760,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Information is often organized as a text hierarchy. A hierarchical text-classification system is thus essential for the management, sharing, and dissemination of information. It aims to automatically classify each incoming document into zero, one, or several categories in the text hierarchy. In this paper, we present a technique called CRHTC (context recognition for hierarchical text classification) that performs hierarchical text classification by recognizing the context of discussion (COD) of each category. A category's COD is governed by its ancestor categories, whose contents indicate contextual backgrounds of the category. A document may be classified into a category only if its content matches the category's COD. CRHTC does not require any trials to manually set parameters, and hence is more portable and easier to implement than other methods. It is empirically evaluated under various conditions. The results show that CRHTC achieves both better and more stable performance than several hierarchical and nonhierarchical text-classification methodologies.
    Date
    22. 3.2009 19:11:54
  13. Zhu, W.Z.; Allen, R.B.: Document clustering using the LSI subspace signature model (2013) 0.02
    0.018052235 = product of:
      0.027078353 = sum of:
        0.0062772194 = weight(_text_:in in 690) [ClassicSimilarity], result of:
          0.0062772194 = score(doc=690,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.09017298 = fieldWeight in 690, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=690)
        0.020801133 = product of:
          0.041602265 = sum of:
            0.041602265 = weight(_text_:22 in 690) [ClassicSimilarity], result of:
              0.041602265 = score(doc=690,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.23214069 = fieldWeight in 690, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=690)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We describe the latent semantic indexing subspace signature model (LSISSM) for semantic content representation of unstructured text. Grounded on singular value decomposition, the model represents terms and documents by the distribution signatures of their statistical contribution across the top-ranking latent concept dimensions. LSISSM matches term signatures with document signatures according to their mapping coherence between latent semantic indexing (LSI) term subspace and LSI document subspace. LSISSM does feature reduction and finds a low-rank approximation of scalable and sparse term-document matrices. Experiments demonstrate that this approach significantly improves the performance of major clustering algorithms such as standard K-means and self-organizing maps compared with the vector space model and the traditional LSI model. The unique contribution ranking mechanism in LSISSM also improves the initialization of standard K-means compared with random seeding procedure, which sometimes causes low efficiency and effectiveness of clustering. A two-stage initialization strategy based on LSISSM significantly reduces the running time of standard K-means procedures.
    Date
    23. 3.2013 13:22:36
  14. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.02
    0.016078722 = product of:
      0.02411808 = sum of:
        0.010250657 = weight(_text_:in in 2741) [ClassicSimilarity], result of:
          0.010250657 = score(doc=2741,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14725187 = fieldWeight in 2741, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2741)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
              0.027734846 = score(doc=2741,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study seeks to find out how human beings cluster Web pages naturally. Twenty Web pages retrieved by the Northem Light search engine for each of 10 queries were sorted by 3 subjects into categories that were natural or meaningful to them. lt was found that different subjects clustered the same set of Web pages quite differently and created different categories. The average inter-subject similarity of the clusters created was a low 0.27. Subjects created an average of 5.4 clusters for each sorting. The categories constructed can be divided into 10 types. About 1/3 of the categories created were topical. Another 20% of the categories relate to the degree of relevance or usefulness. The rest of the categories were subject-independent categories such as format, purpose, authoritativeness and direction to other sources. The authors plan to develop automatic methods for categorizing Web pages using the common categories created by the subjects. lt is hoped that the techniques developed can be used by Web search engines to automatically organize Web pages retrieved into categories that are natural to users. 1. Introduction The World Wide Web is an increasingly important source of information for people globally because of its ease of access, the ease of publishing, its ability to transcend geographic and national boundaries, its flexibility and heterogeneity and its dynamic nature. However, Web users also find it increasingly difficult to locate relevant and useful information in this vast information storehouse. Web search engines, despite their scope and power, appear to be quite ineffective. They retrieve too many pages, and though they attempt to rank retrieved pages in order of probable relevance, often the relevant documents do not appear in the top-ranked 10 or 20 documents displayed. Several studies have found that users do not know how to use the advanced features of Web search engines, and do not know how to formulate and re-formulate queries. Users also typically exert minimal effort in performing, evaluating and refining their searches, and are unwilling to scan more than 10 or 20 items retrieved (Jansen, Spink, Bateman & Saracevic, 1998). This suggests that the conventional ranked-list display of search results does not satisfy user requirements, and that better ways of presenting and summarizing search results have to be developed. One promising approach is to group retrieved pages into clusters or categories to allow users to navigate immediately to the "promising" clusters where the most useful Web pages are likely to be located. This approach has been adopted by a number of search engines (notably Northem Light) and search agents.
    Date
    12. 9.2004 9:56:22
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  15. Reiner, U.: Automatische DDC-Klassifizierung bibliografischer Titeldatensätze der Deutschen Nationalbibliografie (2009) 0.02
    0.0154833 = product of:
      0.02322495 = sum of:
        0.009357527 = weight(_text_:in in 3284) [ClassicSimilarity], result of:
          0.009357527 = score(doc=3284,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.13442196 = fieldWeight in 3284, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=3284)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 3284) [ClassicSimilarity], result of:
              0.027734846 = score(doc=3284,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 3284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Das Klassifizieren von Objekten (z. B. Fauna, Flora, Texte) ist ein Verfahren, das auf menschlicher Intelligenz basiert. In der Informatik - insbesondere im Gebiet der Künstlichen Intelligenz (KI) - wird u. a. untersucht, inweit Verfahren, die menschliche Intelligenz benötigen, automatisiert werden können. Hierbei hat sich herausgestellt, dass die Lösung von Alltagsproblemen eine größere Herausforderung darstellt, als die Lösung von Spezialproblemen, wie z. B. das Erstellen eines Schachcomputers. So ist "Rybka" der seit Juni 2007 amtierende Computerschach-Weltmeistern. Inwieweit Alltagsprobleme mit Methoden der Künstlichen Intelligenz gelöst werden können, ist eine - für den allgemeinen Fall - noch offene Frage. Beim Lösen von Alltagsproblemen spielt die Verarbeitung der natürlichen Sprache, wie z. B. das Verstehen, eine wesentliche Rolle. Den "gesunden Menschenverstand" als Maschine (in der Cyc-Wissensbasis in Form von Fakten und Regeln) zu realisieren, ist Lenat's Ziel seit 1984. Bezüglich des KI-Paradeprojektes "Cyc" gibt es CycOptimisten und Cyc-Pessimisten. Das Verstehen der natürlichen Sprache (z. B. Werktitel, Zusammenfassung, Vorwort, Inhalt) ist auch beim intellektuellen Klassifizieren von bibliografischen Titeldatensätzen oder Netzpublikationen notwendig, um diese Textobjekte korrekt klassifizieren zu können. Seit dem Jahr 2007 werden von der Deutschen Nationalbibliothek nahezu alle Veröffentlichungen mit der Dewey Dezimalklassifikation (DDC) intellektuell klassifiziert.
    Date
    22. 1.2010 14:41:24
    Footnote
    Vortrag gehalten am 03.06.2009 auf dem 98. Bibliothekartag 2009 in Erfurt; erscheint in: Dialog mit Biliotheken. Vgl. auch: http://www.gbv.de/vgm/info/biblio/01VZG/06Publikationen/2009/index.
  16. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.01
    0.013867422 = product of:
      0.041602265 = sum of:
        0.041602265 = product of:
          0.08320453 = sum of:
            0.08320453 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.08320453 = score(doc=1046,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 5.2003 14:17:22
  17. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.01
    0.00808933 = product of:
      0.02426799 = sum of:
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.04853598 = score(doc=2560,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2008 18:31:54
  18. Barbu, E.: What kind of knowledge is in Wikipedia? : unsupervised extraction of properties for similar concepts (2014) 0.01
    0.00627722 = product of:
      0.01883166 = sum of:
        0.01883166 = weight(_text_:in in 1547) [ClassicSimilarity], result of:
          0.01883166 = score(doc=1547,freq=18.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.27051896 = fieldWeight in 1547, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1547)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents a novel method for extracting knowledge from Wikipedia and a classification schema for annotating the extracted knowledge. Unlike the majority of approaches in the literature, we use the raw Wikipedia text for knowledge acquisition. The main assumption made is that the concepts classified under the same node in a taxonomy are described in a comparable way in Wikipedia. The annotation of the extracted knowledge is done at two levels: ontological and logical. The extracted properties are evaluated in the traditional way, that is, by computing the precision of the extraction procedure and in a clustering task. The second method of evaluation is seldom used in the natural language processing community, but it is regularly employed in cognitive psychology.
  19. Panyr, J.: Vektorraum-Modell und Clusteranalyse in Information-Retrieval-Systemen (1987) 0.01
    0.0062383516 = product of:
      0.018715054 = sum of:
        0.018715054 = weight(_text_:in in 2322) [ClassicSimilarity], result of:
          0.018715054 = score(doc=2322,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.26884392 = fieldWeight in 2322, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2322)
      0.33333334 = coord(1/3)
    
    Abstract
    Ausgehend von theoretischen Indexierungsansätzen wird das klassische Vektorraum-Modell für automatische Indexierung (mit dem Trennschärfen-Modell) erläutert. Das Clustering in Information-Retrieval-Systemem wird als eine natürliche logische Folge aus diesem Modell aufgefaßt und in allen seinen Ausprägungen (d.h. als Dokumenten-, Term- oder Dokumenten- und Termklassifikation) behandelt. Anschließend werden die Suchstrategien in vorklassifizierten Dokumentenbeständen (Clustersuche) detailliert beschrieben. Zum Schluß wird noch die sinnvolle Anwendung der Clusteranalyse in Information-Retrieval-Systemen kurz diskutiert
  20. Ingwersen, P.; Wormell, I.: Ranganathan in the perspective of advanced information retrieval (1992) 0.01
    0.0062383516 = product of:
      0.018715054 = sum of:
        0.018715054 = weight(_text_:in in 7695) [ClassicSimilarity], result of:
          0.018715054 = score(doc=7695,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.26884392 = fieldWeight in 7695, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=7695)
      0.33333334 = coord(1/3)
    
    Abstract
    Examnines Ranganathan's approach to knowledge organisation and its relevance to intellectual accessibility in libraries. Discusses the current and future developments of his methodology and theories in knowledge-based systems. Topics covered include: semi-automatic classification and structure of thesauri; user-intermediary interactions in information retrieval (IR); semantic value-theory and uncertainty principles in IR; and case grammar

Years

Languages

  • e 136
  • d 21
  • chi 1
  • More… Less…