Search (11 results, page 1 of 1)

  • × theme_ss:"Automatisches Klassifizieren"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Automatic classification research at OCLC (2002) 0.02
    0.021157425 = product of:
      0.06347227 = sum of:
        0.06347227 = sum of:
          0.021921717 = weight(_text_:of in 1563) [ClassicSimilarity], result of:
            0.021921717 = score(doc=1563,freq=14.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.31997898 = fieldWeight in 1563, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1563)
          0.041550554 = weight(_text_:22 in 1563) [ClassicSimilarity], result of:
            0.041550554 = score(doc=1563,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.2708308 = fieldWeight in 1563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1563)
      0.33333334 = coord(1/3)
    
    Abstract
    OCLC enlists the cooperation of the world's libraries to make the written record of humankind's cultural heritage more accessible through electronic media. Part of this goal can be accomplished through the application of the principles of knowledge organization. We believe that cultural artifacts are effectively lost unless they are indexed, cataloged and classified. Accordingly, OCLC has developed products, sponsored research projects, and encouraged the participation in international standards communities whose outcome has been improved library classification schemes, cataloging productivity tools, and new proposals for the creation and maintenance of metadata. Though cataloging and classification requires expert intellectual effort, we recognize that at least some of the work must be automated if we hope to keep pace with cultural change
    Date
    5. 5.2003 9:22:09
  2. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.01
    0.009892989 = product of:
      0.029678967 = sum of:
        0.029678967 = product of:
          0.059357934 = sum of:
            0.059357934 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.059357934 = score(doc=611,freq=2.0), product of:
                0.15341885 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2009 12:54:24
  3. Reiner, U.: Automatische DDC-Klassifizierung bibliografischer Titeldatensätze der Deutschen Nationalbibliografie (2009) 0.00
    0.0039571957 = product of:
      0.011871587 = sum of:
        0.011871587 = product of:
          0.023743173 = sum of:
            0.023743173 = weight(_text_:22 in 3284) [ClassicSimilarity], result of:
              0.023743173 = score(doc=3284,freq=2.0), product of:
                0.15341885 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043811057 = queryNorm
                0.15476047 = fieldWeight in 3284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2010 14:41:24
  4. Godby, C. J.; Stuler, J.: ¬The Library of Congress Classification as a knowledge base for automatic subject categorization (2001) 0.00
    0.0035289964 = product of:
      0.010586989 = sum of:
        0.010586989 = product of:
          0.021173978 = sum of:
            0.021173978 = weight(_text_:of in 1567) [ClassicSimilarity], result of:
              0.021173978 = score(doc=1567,freq=10.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3090647 = fieldWeight in 1567, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1567)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes a set of experiments in adapting a subset of the Library of Congress Classification for use as a database for automatic classification. A high degree of concept integrity was obtained when subject headings were mapped from OCLC's WorldCat database and filtered using the log-likelihood statistic
  5. Prabowo, R.; Jackson, M.; Burden, P.; Knoell, H.-D.: Ontology-based automatic classification for the Web pages : design, implementation and evaluation (2002) 0.00
    0.0031316737 = product of:
      0.009395021 = sum of:
        0.009395021 = product of:
          0.018790042 = sum of:
            0.018790042 = weight(_text_:of in 3383) [ClassicSimilarity], result of:
              0.018790042 = score(doc=3383,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.2742677 = fieldWeight in 3383, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3383)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In recent years, we have witnessed the continual growth in the use of ontologies in order to provide a mechanism to enable machine reasoning. This paper describes an automatic classifier, which focuses on the use of ontologies for classifying Web pages with respect to the Dewey Decimal Classification (DDC) and Library of Congress Classification (LCC) schemes. Firstly, we explain how these ontologies can be built in a modular fashion, and mapped into DDC and LCC. Secondly, we propose the formal definition of a DDC-LCC and an ontology-classification-scheme mapping. Thirdly, we explain the way the classifier uses these ontologies to assist classification. Finally, an experiment in which the accuracy of the classifier was evaluated is presented. The experiment shows that our approach results an improved classification in terms of accuracy. This improvement, however, comes at a cost in a low overage ratio due to the incompleteness of the ontologies used
  6. Adams, K.C.: Word wranglers : Automatic classification tools transform enterprise documents from "bags of words" into knowledge resources (2003) 0.00
    0.0031192217 = product of:
      0.009357665 = sum of:
        0.009357665 = product of:
          0.01871533 = sum of:
            0.01871533 = weight(_text_:of in 1665) [ClassicSimilarity], result of:
              0.01871533 = score(doc=1665,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.27317715 = fieldWeight in 1665, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1665)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Taxonomies are an important part of any knowledge management (KM) system, and automatic classification software is emerging as a "killer app" for consumer and enterprise portals. A number of companies such as Inxight Software , Mohomine, Metacode, and others claim to interpret the semantic content of any textual document and automatically classify text on the fly. The promise that software could automatically produce a Yahoo-style directory is a siren call not many IT managers are able to resist. KM needs have grown more complex due to the increasing amount of digital information, the declining effectiveness of keyword searching, and heterogeneous document formats in corporate databases. This environment requires innovative KM tools, and automatic classification technology is an example of this new kind of software. These products can be divided into three categories according to their underlying technology - rules-based, catalog-by-example, and statistical clustering. Evolving trends in this market include framing classification as a cyborg (computer- and human-based) activity and the increasing use of extensible markup language (XML) and support vector machine (SVM) technology. In this article, we'll survey the rapidly changing automatic classification software market and examine the features and capabilities of leading classification products.
  7. Hagedorn, K.; Chapman, S.; Newman, D.: Enhancing search and browse using automated clustering of subject metadata (2007) 0.00
    0.0028993662 = product of:
      0.008698098 = sum of:
        0.008698098 = product of:
          0.017396197 = sum of:
            0.017396197 = weight(_text_:of in 1168) [ClassicSimilarity], result of:
              0.017396197 = score(doc=1168,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.25392252 = fieldWeight in 1168, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1168)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web puzzle of online information resources often hinders end-users from effective and efficient access to these resources. Clustering resources into appropriate subject-based groupings may help alleviate these difficulties, but will it work with heterogeneous material? The University of Michigan and the University of California Irvine joined forces to test automatically enhancing metadata records using the Topic Modeling algorithm on the varied OAIster corpus. We created labels for the resulting clusters of metadata records, matched the clusters to an in-house classification system, and developed a prototype that would showcase methods for search and retrieval using the enhanced records. Results indicated that while the algorithm was somewhat time-intensive to run and using a local classification scheme had its drawbacks, precise clustering of records was achieved and the prototype interface proved that faceted classification could be powerful in helping end-users find resources.
  8. Koch, T.; Ardö, A.: Automatic classification of full-text HTML-documents from one specific subject area : DESIRE II D3.6a, Working Paper 2 (2000) 0.00
    0.0027335489 = product of:
      0.008200646 = sum of:
        0.008200646 = product of:
          0.016401293 = sum of:
            0.016401293 = weight(_text_:of in 1667) [ClassicSimilarity], result of:
              0.016401293 = score(doc=1667,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23940048 = fieldWeight in 1667, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1667)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    1 Introduction / 2 Method overview / 3 Ei thesaurus preprocessing / 4 Automatic classification process: 4.1 Matching -- 4.2 Weighting -- 4.3 Preparation for display / 5 Results of the classification process / 6 Evaluations / 7 Software / 8 Other applications / 9 Experiments with universal classification systems / References / Appendix A: Ei classification service: Software / Appendix B: Use of the classification software as subject filter in a WWW harvester.
  9. Yi, K.: Challenges in automated classification using library classification schemes (2006) 0.00
    0.0027335489 = product of:
      0.008200646 = sum of:
        0.008200646 = product of:
          0.016401293 = sum of:
            0.016401293 = weight(_text_:of in 5810) [ClassicSimilarity], result of:
              0.016401293 = score(doc=5810,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.23940048 = fieldWeight in 5810, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5810)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    A major library classification scheme has long been standard classification framework for information sources in traditional library environment, and text classification (TC) becomes a popular and attractive tool of organizing digital information. This paper gives an overview of previous projects and studies on TC using major library classification schemes, and summarizes a discussion of TC research challenges.
  10. Reiner, U.: Automatic analysis of DDC notations (2007) 0.00
    0.0023673228 = product of:
      0.0071019684 = sum of:
        0.0071019684 = product of:
          0.014203937 = sum of:
            0.014203937 = weight(_text_:of in 118) [ClassicSimilarity], result of:
              0.014203937 = score(doc=118,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.20732689 = fieldWeight in 118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=118)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  11. Lindholm, J.; Schönthal, T.; Jansson , K.: Experiences of harvesting Web resources in engineering using automatic classification (2003) 0.00
    0.0022319334 = product of:
      0.0066958 = sum of:
        0.0066958 = product of:
          0.0133916 = sum of:
            0.0133916 = weight(_text_:of in 4088) [ClassicSimilarity], result of:
              0.0133916 = score(doc=4088,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19546966 = fieldWeight in 4088, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4088)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Authors describe the background and the work involved in setting up Engine-e, a Web index that uses automatic classification as a mean for the selection of resources in Engineering. Considerations in offering a robot-generated Web index as a successor to a manually indexed quality-controlled subject gateway are also discussed