Search (95 results, page 2 of 5)

  • × theme_ss:"Automatisches Klassifizieren"
  • × year_i:[2000 TO 2010}
  1. Godby, C.J.; Stuler, J.: ¬The Library of Congress Classification as a knowledge base for automatic subject categorization : subject access issues (2003) 0.00
    0.0040970687 = product of:
      0.012291206 = sum of:
        0.012291206 = weight(_text_:a in 3962) [ClassicSimilarity], result of:
          0.012291206 = score(doc=3962,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23593865 = fieldWeight in 3962, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3962)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes a set of experiments in adapting a subset of the Library of Congress Classification for use as a database for automatic classification. A high degree of concept integrity was obtained when subject headings were mapped from OCLC's WorldCat database and filtered using the log-likelihood statistic.
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
    Type
    a
  2. Yoon, Y.; Lee, G.G.: Efficient implementation of associative classifiers for document classification (2007) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 909) [ClassicSimilarity], result of:
          0.011945928 = score(doc=909,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 909, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=909)
      0.33333334 = coord(1/3)
    
    Abstract
    In practical text classification tasks, the ability to interpret the classification result is as important as the ability to classify exactly. Associative classifiers have many favorable characteristics such as rapid training, good classification accuracy, and excellent interpretation. However, associative classifiers also have some obstacles to overcome when they are applied in the area of text classification. The target text collection generally has a very high dimension, thus the training process might take a very long time. We propose a feature selection based on the mutual information between the word and class variables to reduce the space dimension of the associative classifiers. In addition, the training process of the associative classifier produces a huge amount of classification rules, which makes the prediction with a new document ineffective. We resolve this by introducing a new efficient method for storing and pruning classification rules. This method can also be used when predicting a test document. Experimental results using the 20-newsgroups dataset show many benefits of the associative classification in both training and predicting when applied to a real world problem.
    Type
    a
  3. Lim, C.S.; Lee, K.J.; Kim, G.C.: Multiple sets of features for automatic genre classification of web documents (2005) 0.00
    0.0038316585 = product of:
      0.011494976 = sum of:
        0.011494976 = weight(_text_:a in 1048) [ClassicSimilarity], result of:
          0.011494976 = score(doc=1048,freq=24.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22065444 = fieldWeight in 1048, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
      0.33333334 = coord(1/3)
    
    Abstract
    With the increase of information on the Web, it is difficult to find desired information quickly out of the documents retrieved by a search engine. One way to solve this problem is to classify web documents according to various criteria. Most document classification has been focused on a subject or a topic of a document. A genre or a style is another view of a document different from a subject or a topic. The genre is also a criterion to classify documents. In this paper, we suggest multiple sets of features to classify genres of web documents. The basic set of features, which have been proposed in the previous studies, is acquired from the textual properties of documents, such as the number of sentences, the number of a certain word, etc. However, web documents are different from textual documents in that they contain URL and HTML tags within the pages. We introduce new sets of features specific to web documents, which are extracted from URL and HTML tags. The present work is an attempt to evaluate the performance of the proposed sets of features, and to discuss their characteristics. Finally, we conclude which is an appropriate set of features in automatic genre classification of web documents.
    Type
    a
  4. Sebastiani, F.: Classification of text, automatic (2006) 0.00
    0.003793148 = product of:
      0.011379444 = sum of:
        0.011379444 = weight(_text_:a in 5003) [ClassicSimilarity], result of:
          0.011379444 = score(doc=5003,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 5003, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5003)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic text classification (ATC) is a discipline at the crossroads of information retrieval (IR), machine learning (ML), and computational linguistics (CL), and consists in the realization of text classifiers, i.e. software systems capable of assigning texts to one or more categories, or classes, from a predefined set. Applications range from the automated indexing of scientific articles, to e-mail routing, spam filtering, authorship attribution, and automated survey coding. This article will focus on the ML approach to ATC, whereby a software system (called the learner) automatically builds a classifier for the categories of interest by generalizing from a "training" set of pre-classified texts.
    Type
    a
  5. Mukhopadhyay, S.; Peng, S.; Raje, R.; Palakal, M.; Mostafa, J.: Multi-agent information classification using dynamic acquaintance lists (2003) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 1755) [ClassicSimilarity], result of:
          0.011262729 = score(doc=1755,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 1755, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1755)
      0.33333334 = coord(1/3)
    
    Abstract
    There has been considerable interest in recent years in providing automated information services, such as information classification, by means of a society of collaborative agents. These agents augment each other's knowledge structures (e.g., the vocabularies) and assist each other in providing efficient information services to a human user. However, when the number of agents present in the society increases, exhaustive communication and collaboration among agents result in a [arge communication overhead and increased delays in response time. This paper introduces a method to achieve selective interaction with a relatively small number of potentially useful agents, based an simple agent modeling and acquaintance lists. The key idea presented here is that the acquaintance list of an agent, representing a small number of other agents to be collaborated with, is dynamically adjusted. The best acquaintances are automatically discovered using a learning algorithm, based an the past history of collaboration. Experimental results are presented to demonstrate that such dynamically learned acquaintance lists can lead to high quality of classification, while significantly reducing the delay in response time.
    Type
    a
  6. Frank, E.; Paynter, G.W.: Predicting Library of Congress Classifications from Library of Congress Subject Headings (2004) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 2218) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2218,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2218, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2218)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper addresses the problem of automatically assigning a Library of Congress Classification (LCC) to a work given its set of Library of Congress Subject Headings (LCSH). LCCs are organized in a tree: The root node of this hierarchy comprises all possible topics, and leaf nodes correspond to the most specialized topic areas defined. We describe a procedure that, given a resource identified by its LCSH, automatically places that resource in the LCC hierarchy. The procedure uses machine learning techniques and training data from a large library catalog to learn a model that maps from sets of LCSH to classifications from the LCC tree. We present empirical results for our technique showing its accuracy an an independent collection of 50,000 LCSH/LCC pairs.
    Type
    a
  7. Leroy, G.; Miller, T.; Rosemblat, G.; Browne, A.: ¬A balanced approach to health information evaluation : a vocabulary-based naïve Bayes classifier and readability formulas (2008) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 1998) [ClassicSimilarity], result of:
          0.011262729 = score(doc=1998,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 1998, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1998)
      0.33333334 = coord(1/3)
    
    Abstract
    Since millions seek health information online, it is vital for this information to be comprehensible. Most studies use readability formulas, which ignore vocabulary, and conclude that online health information is too difficult. We developed a vocabularly-based, naïve Bayes classifier to distinguish between three difficulty levels in text. It proved 98% accurate in a 250-document evaluation. We compared our classifier with readability formulas for 90 new documents with different origins and asked representative human evaluators, an expert and a consumer, to judge each document. Average readability grade levels for educational and commercial pages was 10th grade or higher, too difficult according to current literature. In contrast, the classifier showed that 70-90% of these pages were written at an intermediate, appropriate level indicating that vocabulary usage is frequently appropriate in text considered too difficult by readability formula evaluations. The expert considered the pages more difficult for a consumer than the consumer did.
    Type
    a
  8. Cosh, K.J.; Burns, R.; Daniel, T.: Content clouds : classifying content in Web 2.0 (2008) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 2013) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2013,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2013, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2013)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - With increasing amounts of user generated content being produced electronically in the form of wikis, blogs, forums etc. the purpose of this paper is to investigate a new approach to classifying ad hoc content. Design/methodology/approach - The approach applies natural language processing (NLP) tools to automatically extract the content of some text, visualizing the results in a content cloud. Findings - Content clouds share the visual simplicity of a tag cloud, but display the details of an article at a different level of abstraction, providing a complimentary classification. Research limitations/implications - Provides the general approach to creating a content cloud. In the future, the process can be refined and enhanced by further evaluation of results. Further work is also required to better identify closely related articles. Practical implications - Being able to automatically classify the content generated by web users will enable others to find more appropriate content. Originality/value - The approach is original. Other researchers have produced a cloud, simply by using skiplists to filter unwanted words, this paper's approach improves this by applying appropriate NLP techniques.
    Type
    a
  9. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 2100) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2100,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2100, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.33333334 = coord(1/3)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
    Type
    a
  10. Ko, Y.; Seo, J.: Text classification from unlabeled documents with bootstrapping and feature projection techniques (2009) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 2452) [ClassicSimilarity], result of:
          0.011262729 = score(doc=2452,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 2452, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2452)
      0.33333334 = coord(1/3)
    
    Abstract
    Many machine learning algorithms have been applied to text classification tasks. In the machine learning paradigm, a general inductive process automatically builds a text classifier by learning, generally known as supervised learning. However, the supervised learning approaches have some problems. The most notable problem is that they require a large number of labeled training documents for accurate learning. While unlabeled documents are easily collected and plentiful, labeled documents are difficultly generated because a labeling task must be done by human developers. In this paper, we propose a new text classification method based on unsupervised or semi-supervised learning. The proposed method launches text classification tasks with only unlabeled documents and the title word of each category for learning, and then it automatically learns text classifier by using bootstrapping and feature projection techniques. The results of experiments showed that the proposed method achieved reasonably useful performance compared to a supervised method. If the proposed method is used in a text classification task, building text classification systems will become significantly faster and less expensive.
    Type
    a
  11. Kwon, O.W.; Lee, J.H.: Text categorization based on k-nearest neighbor approach for web site classification (2003) 0.00
    0.0036685336 = product of:
      0.011005601 = sum of:
        0.011005601 = weight(_text_:a in 1070) [ClassicSimilarity], result of:
          0.011005601 = score(doc=1070,freq=22.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21126054 = fieldWeight in 1070, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1070)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic categorization is a viable method to deal with the scaling problem on the World Wide Web. For Web site classification, this paper proposes the use of Web pages linked with the home page in a different manner from the sole use of home pages in previous research. To implement our proposed method, we derive a scheme for Web site classification based on the k-nearest neighbor (k-NN) approach. It consists of three phases: Web page selection (connectivity analysis), Web page classification, and Web site classification. Given a Web site, the Web page selection chooses several representative Web pages using connectivity analysis. The k-NN classifier next classifies each of the selected Web pages. Finally, the classified Web pages are extended to a classification of the entire Web site. To improve performance, we supplement the k-NN approach with a feature selection method and a term weighting scheme using markup tags, and also reform its document-document similarity measure. In our experiments on a Korean commercial Web directory, the proposed system, using both a home page and its linked pages, improved the performance of micro-averaging breakeven point by 30.02%, compared with an ordinary classification which uses a home page only.
    Type
    a
  12. Yi, K.: Challenges in automated classification using library classification schemes (2006) 0.00
    0.0035395343 = product of:
      0.010618603 = sum of:
        0.010618603 = weight(_text_:a in 5810) [ClassicSimilarity], result of:
          0.010618603 = score(doc=5810,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20383182 = fieldWeight in 5810, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5810)
      0.33333334 = coord(1/3)
    
    Abstract
    A major library classification scheme has long been standard classification framework for information sources in traditional library environment, and text classification (TC) becomes a popular and attractive tool of organizing digital information. This paper gives an overview of previous projects and studies on TC using major library classification schemes, and summarizes a discussion of TC research challenges.
    Language
    a
  13. Sun, A.; Lim, E.-P.; Ng, W.-K.: Performance measurement framework for hierarchical text classification (2003) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 1808) [ClassicSimilarity], result of:
          0.010535319 = score(doc=1808,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 1808, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1808)
      0.33333334 = coord(1/3)
    
    Abstract
    Hierarchical text classification or simply hierarchical classification refers to assigning a document to one or more suitable categories from a hierarchical category space. In our literature survey, we have found that the existing hierarchical classification experiments used a variety of measures to evaluate performance. These performance measures often assume independence between categories and do not consider documents misclassified into categories that are similar or not far from the correct categories in the category tree. In this paper, we therefore propose new performance measures for hierarchicai classification. The proposed performance measures consist of category similarity measures and distance-based measures that consider the contributions of misclassified documents. Our experiments an hierarchical classification methods based an SVM classifiers and binary Naive Bayes classifiers showed that SVM classifiers perform better than Naive Bayes classifiers an Reuters-21578 collection according to the extended measures. A new classifier-centric measure called blocking measure is also defined to examine the performance of subtree classifiers in a top-down levelbased hierarchical classificatIon method.
    Type
    a
  14. Wu, K.J.; Chen, M.-C.; Sun, Y.: Automatic topics discovery from hyperlinked documents (2004) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 2563) [ClassicSimilarity], result of:
          0.010535319 = score(doc=2563,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 2563, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2563)
      0.33333334 = coord(1/3)
    
    Abstract
    Topic discovery is an important means for marketing, e-Business and social science studies. As well, it can be applied to various purposes, such as identifying a group with certain properties and observing the emergence and diminishment of a certain cyber community. Previous topic discovery work (J.M. Kleinberg, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, p. 668) requires manual judgment of usefulness of outcomes and is thus incapable of handling the explosive growth of the Internet. In this paper, we propose the Automatic Topic Discovery (ATD) method, which combines a method of base set construction, a clustering algorithm and an iterative principal eigenvector computation method to discover the topics relevant to a given query without using manual examination. Given a query, ATD returns with topics associated with the query and top representative pages for each topic. Our experiments show that the ATD method performs better than the traditional eigenvector method in terms of computation time and topic discovery quality.
    Type
    a
  15. Sebastiani, F.: Machine learning in automated text categorization (2002) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 3389) [ClassicSimilarity], result of:
          0.010535319 = score(doc=3389,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 3389, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3389)
      0.33333334 = coord(1/3)
    
    Abstract
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last 10 years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based an machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert labor power, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely, document representation, classifier construction, and classifier evaluation.
    Type
    a
  16. Wang, J.: ¬An extensive study on automated Dewey Decimal Classification (2009) 0.00
    0.0034978096 = product of:
      0.010493428 = sum of:
        0.010493428 = weight(_text_:a in 3172) [ClassicSimilarity], result of:
          0.010493428 = score(doc=3172,freq=20.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20142901 = fieldWeight in 3172, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3172)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we present a theoretical analysis and extensive experiments on the automated assignment of Dewey Decimal Classification (DDC) classes to bibliographic data with a supervised machine-learning approach. Library classification systems, such as the DDC, impose great obstacles on state-of-art text categorization (TC) technologies, including deep hierarchy, data sparseness, and skewed distribution. We first analyze statistically the document and category distributions over the DDC, and discuss the obstacles imposed by bibliographic corpora and library classification schemes on TC technology. To overcome these obstacles, we propose an innovative algorithm to reshape the DDC structure into a balanced virtual tree by balancing the category distribution and flattening the hierarchy. To improve the classification effectiveness to a level acceptable to real-world applications, we propose an interactive classification model that is able to predict a class of any depth within a limited number of user interactions. The experiments are conducted on a large bibliographic collection created by the Library of Congress within the science and technology domains over 10 years. With no more than three interactions, a classification accuracy of nearly 90% is achieved, thus providing a practical solution to the automatic bibliographic classification problem.
    Type
    a
  17. Giorgetti, D.; Sebastiani, F.: Automating survey coding by multiclass text categorization techniques (2003) 0.00
    0.0033183135 = product of:
      0.0099549405 = sum of:
        0.0099549405 = weight(_text_:a in 5172) [ClassicSimilarity], result of:
          0.0099549405 = score(doc=5172,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19109234 = fieldWeight in 5172, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5172)
      0.33333334 = coord(1/3)
    
    Abstract
    In this issue Giorgetti, and Sebastiani suggest that answers to open ended questions in survey instruments can be coded automatically by creating classifiers which learn from training sets of manually coded answers. The manual effort required is only that of classifying a representative set of documents, not creating a dictionary of words that trigger an assignment. They use a naive Bayesian probabilistic learner from Mc Callum's RAINBOW package and the multi-class support vector machine learner from Hsu and Lin's BSVM package, both examples of text categorization techniques. Data from the 1996 General Social Survey by the U.S. National Opinion Research Center provided a set of answers to three questions (previously tested by Viechnicki using a dictionary approach), their associated manually assigned category codes, and a complete set of predefined category codes. The learners were run on three random disjoint subsets of the answer sets to create the classifiers and a remaining set was used as a test set. The dictionary approach is out preformed by 18% for RAINBOW and by 17% for BSVM, while the standard deviation of the results is reduced by 28% and 34% respectively over the dictionary approach.
    Type
    a
  18. Golub, K.: Automated subject classification of textual Web pages, based on a controlled vocabulary : challenges and recommendations (2006) 0.00
    0.00325127 = product of:
      0.009753809 = sum of:
        0.009753809 = weight(_text_:a in 5897) [ClassicSimilarity], result of:
          0.009753809 = score(doc=5897,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18723148 = fieldWeight in 5897, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5897)
      0.33333334 = coord(1/3)
    
    Abstract
    The primary objective of this study was to identify and address problems of applying a controlled vocabulary in automated subject classification of textual Web pages, in the area of engineering. Web pages have special characteristics such as structural information, but are at the same time rather heterogeneous. The classification approach used comprises string-to-string matching between words in a term list extracted from the Ei (Engineering Information) thesaurus and classification scheme, and words in the text to be classified. Based on a sample of 70 Web pages, a number of problems with the term list are identified. Reasons for those problems are discussed and improvements proposed. Methods for implementing the improvements are also specified, suggesting further research.
    Type
    a
  19. Finn, A.; Kushmerick, N.: Learning to classify documents according to genre (2006) 0.00
    0.00325127 = product of:
      0.009753809 = sum of:
        0.009753809 = weight(_text_:a in 6010) [ClassicSimilarity], result of:
          0.009753809 = score(doc=6010,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18723148 = fieldWeight in 6010, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=6010)
      0.33333334 = coord(1/3)
    
    Abstract
    Current document-retrieval tools succeed in locating large numbers of documents relevant to a given query. While search results may be relevant according to the topic of the documents, it is more difficult to identify which of the relevant documents are most suitable for a particular user. Automatic genre analysis (i.e., the ability to distinguish documents according to style) would be a useful tool for identifying documents that are most suitable for a particular user. We investigate the use of machine learning for automatic genre classification. We introduce the idea of domain transfer-genre classifiers should be reusable across multiple topics-which does not arise in standard text classification. We investigate different features for building genre classifiers and their ability to transfer across multiple-topic domains. We also show how different feature-sets can be used in conjunction with each other to improve performance and reduce the number of documents that need to be labeled.
    Type
    a
  20. Denoyer, L.; Gallinari, P.: Bayesian network model for semi-structured document classification (2004) 0.00
    0.00325127 = product of:
      0.009753809 = sum of:
        0.009753809 = weight(_text_:a in 995) [ClassicSimilarity], result of:
          0.009753809 = score(doc=995,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.18723148 = fieldWeight in 995, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=995)
      0.33333334 = coord(1/3)
    
    Abstract
    Recently, a new community has started to emerge around the development of new information research methods for searching and analyzing semi-structured and XML like documents. The goal is to handle both content and structural information, and to deal with different types of information content (text, image, etc.). We consider here the task of structured document classification. We propose a generative model able to handle both structure and content which is based on Bayesian networks. We then show how to transform this generative model into a discriminant classifier using the method of Fisher kernel. The model is then extended for dealing with different types of content information (here text and images). The model was tested on three databases: the classical webKB corpus composed of HTML pages, the new INEX corpus which has become a reference in the field of ad-hoc retrieval for XML documents, and a multimedia corpus of Web pages.
    Type
    a

Languages

  • e 81
  • d 13
  • a 1
  • More… Less…

Types

  • a 84
  • el 12
  • m 1
  • r 1
  • x 1
  • More… Less…