Search (94 results, page 1 of 5)

  • × theme_ss:"Automatisches Klassifizieren"
  • × year_i:[2000 TO 2010}
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.08
    0.0846826 = sum of:
      0.054507013 = product of:
        0.21802805 = sum of:
          0.21802805 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.21802805 = score(doc=562,freq=2.0), product of:
              0.3879378 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.045758117 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.25 = coord(1/4)
      0.030175587 = product of:
        0.04526338 = sum of:
          0.008065818 = weight(_text_:a in 562) [ClassicSimilarity], result of:
            0.008065818 = score(doc=562,freq=8.0), product of:
              0.052761257 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.045758117 = queryNorm
              0.15287387 = fieldWeight in 562, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
          0.03719756 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.03719756 = score(doc=562,freq=2.0), product of:
              0.16023713 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045758117 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.6666667 = coord(2/3)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
    Type
    a
  2. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.03
    0.02748698 = product of:
      0.05497396 = sum of:
        0.05497396 = product of:
          0.08246094 = sum of:
            0.008065818 = weight(_text_:a in 1046) [ClassicSimilarity], result of:
              0.008065818 = score(doc=1046,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
            0.07439512 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.07439512 = score(doc=1046,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    5. 5.2003 14:17:22
    Type
    a
  3. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.02
    0.019170778 = product of:
      0.038341556 = sum of:
        0.038341556 = product of:
          0.05751233 = sum of:
            0.014115181 = weight(_text_:a in 5273) [ClassicSimilarity], result of:
              0.014115181 = score(doc=5273,freq=18.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.26752928 = fieldWeight in 5273, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
            0.04339715 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.04339715 = score(doc=5273,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In text categorization tasks, classification on some class hierarchies has better results than in cases without the hierarchy. Currently, because a large number of documents are divided into several subgroups in a hierarchy, we can appropriately use a hierarchical classification method. However, we have no systematic method to build a hierarchical classification system that performs well with large collections of practical data. In this article, we introduce a new evaluation scheme for internal node classifiers, which can be used effectively to develop a hierarchical classification system. We also show that our method for constructing the hierarchical classification system is very effective, especially for the task of constructing classifiers applied to hierarchy tree with a lot of levels.
    Date
    22. 7.2006 16:24:52
    Type
    a
  4. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.02
    0.017972663 = product of:
      0.035945326 = sum of:
        0.035945326 = product of:
          0.053917985 = sum of:
            0.0105208345 = weight(_text_:a in 2560) [ClassicSimilarity], result of:
              0.0105208345 = score(doc=2560,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19940455 = fieldWeight in 2560, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
            0.04339715 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.04339715 = score(doc=2560,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The proliferation of digital resources and their integration into a traditional library setting has created a pressing need for an automated tool that organizes textual information based on library classification schemes. Automated text classification is a research field of developing tools, methods, and models to automate text classification. This article describes the current popular approach for text classification and major text classification projects and applications that are based on library classification schemes. Related issues and challenges are discussed, and a number of considerations for the challenges are examined.
    Date
    22. 9.2008 18:31:54
    Type
    a
  5. Kleinoeder, H.H.; Puzicha, J.: Automatische Katalogisierung am Beispiel einer Pilotanwendung (2002) 0.02
    0.01769935 = product of:
      0.0353987 = sum of:
        0.0353987 = product of:
          0.053098045 = sum of:
            0.009410121 = weight(_text_:a in 1154) [ClassicSimilarity], result of:
              0.009410121 = score(doc=1154,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 1154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1154)
            0.043687925 = weight(_text_:h in 1154) [ClassicSimilarity], result of:
              0.043687925 = score(doc=1154,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.38429362 = fieldWeight in 1154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1154)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Info 7. 17(2002) H.1, S.19-21
    Type
    a
  6. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.02
    0.015955878 = product of:
      0.031911757 = sum of:
        0.031911757 = product of:
          0.047867633 = sum of:
            0.010670074 = weight(_text_:a in 2760) [ClassicSimilarity], result of:
              0.010670074 = score(doc=2760,freq=14.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.20223314 = fieldWeight in 2760, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
            0.03719756 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.03719756 = score(doc=2760,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Information is often organized as a text hierarchy. A hierarchical text-classification system is thus essential for the management, sharing, and dissemination of information. It aims to automatically classify each incoming document into zero, one, or several categories in the text hierarchy. In this paper, we present a technique called CRHTC (context recognition for hierarchical text classification) that performs hierarchical text classification by recognizing the context of discussion (COD) of each category. A category's COD is governed by its ancestor categories, whose contents indicate contextual backgrounds of the category. A document may be classified into a category only if its content matches the category's COD. CRHTC does not require any trials to manually set parameters, and hence is more portable and easier to implement than other methods. It is empirically evaluated under various conditions. The results show that CRHTC achieves both better and more stable performance than several hierarchical and nonhierarchical text-classification methodologies.
    Date
    22. 3.2009 19:11:54
    Type
    a
  7. Pfeffer, M.: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen (2009) 0.01
    0.01374349 = product of:
      0.02748698 = sum of:
        0.02748698 = product of:
          0.04123047 = sum of:
            0.004032909 = weight(_text_:a in 3051) [ClassicSimilarity], result of:
              0.004032909 = score(doc=3051,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
            0.03719756 = weight(_text_:22 in 3051) [ClassicSimilarity], result of:
              0.03719756 = score(doc=3051,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    22. 8.2009 19:51:28
    Type
    a
  8. Brückner, T.; Dambeck, H.: Sortierautomaten : Grundlagen der Textklassifizierung (2003) 0.01
    0.013560796 = product of:
      0.027121592 = sum of:
        0.027121592 = product of:
          0.040682387 = sum of:
            0.0053772116 = weight(_text_:a in 2398) [ClassicSimilarity], result of:
              0.0053772116 = score(doc=2398,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10191591 = fieldWeight in 2398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2398)
            0.035305176 = weight(_text_:h in 2398) [ClassicSimilarity], result of:
              0.035305176 = score(doc=2398,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.31055614 = fieldWeight in 2398, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2398)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    c't. 2003, H.19, S.192-197
    Type
    a
  9. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.01
    0.013501208 = product of:
      0.027002417 = sum of:
        0.027002417 = product of:
          0.040503625 = sum of:
            0.0095056575 = weight(_text_:a in 2765) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=2765,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 2765, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
            0.030997967 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.030997967 = score(doc=2765,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Passages can be hidden within a text to circumvent their disallowed transfer. Such release of compartmentalized information is of concern to all corporate and governmental organizations. Passage retrieval is well studied; we posit, however, that passage detection is not. Passage retrieval is the determination of the degree of relevance of blocks of text, namely passages, comprising a document. Rather than determining the relevance of a document in its entirety, passage retrieval determines the relevance of the individual passages. As such, modified traditional information-retrieval techniques compare terms found in user queries with the individual passages to determine a similarity score for passages of interest. In passage detection, passages are classified into predetermined categories. More often than not, passage detection techniques are deployed to detect hidden paragraphs in documents. That is, to hide information, documents are injected with hidden text into passages. Rather than matching query terms against passages to determine their relevance, using text-mining techniques, the passages are classified. Those documents with hidden passages are defined as infected. Thus, simply stated, passage retrieval is the search for passages relevant to a user query, while passage detection is the classification of passages. That is, in passage detection, passages are labeled with one or more categories from a set of predetermined categories. We present a keyword-based dynamic passage approach (KDP) and demonstrate that KDP outperforms statistically significantly (99% confidence) the other document-splitting approaches by 12% to 18% in the passage detection and passage category-prediction tasks. Furthermore, we evaluate the effects of the feature selection, passage length, ambiguous passages, and finally training-data category distribution on passage-detection accuracy.
    Date
    22. 3.2009 19:14:43
    Type
    a
  10. Cui, H.; Heidorn, P.B.; Zhang, H.: ¬An approach to automatic classification of text for information retrieval (2002) 0.01
    0.011865697 = product of:
      0.023731394 = sum of:
        0.023731394 = product of:
          0.03559709 = sum of:
            0.0047050603 = weight(_text_:a in 174) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=174,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 174, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=174)
            0.03089203 = weight(_text_:h in 174) [ClassicSimilarity], result of:
              0.03089203 = score(doc=174,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.27173662 = fieldWeight in 174, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=174)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  11. Chung, Y.-M.; Noh, Y.-H.: Developing a specialized directory system by automatically classifying Web documents (2003) 0.01
    0.010699681 = product of:
      0.021399362 = sum of:
        0.021399362 = product of:
          0.032099042 = sum of:
            0.013375646 = weight(_text_:a in 1566) [ClassicSimilarity], result of:
              0.013375646 = score(doc=1566,freq=22.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.25351265 = fieldWeight in 1566, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1566)
            0.018723397 = weight(_text_:h in 1566) [ClassicSimilarity], result of:
              0.018723397 = score(doc=1566,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 1566, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1566)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This study developed a specialized directory system using an automatic classification technique. Economics was selected as the subject field for the classification experiments with Web documents. The classification scheme of the directory follows the DDC, and subject terms representing each class number or subject category were selected from the DDC table to construct a representative term dictionary. In collecting and classifying the Web documents, various strategies were tested in order to find the optimal thresholds. In the classification experiments, Web documents in economics were classified into a total of 757 hierarchical subject categories built from the DDC scheme. The first and second experiments using the representative term dictionary resulted in relatively high precision ratios of 77 and 60%, respectively. The third experiment employing a machine learning-based k-nearest neighbours (kNN) classifier in a closed experimental setting achieved a precision ratio of 96%. This implies that it is possible to enhance the classification performance by applying a hybrid method combining a dictionary-based technique and a kNN classifier
    Type
    a
  12. Ruiz, M.E.; Srinivasan, P.: Combining machine learning and hierarchical indexing structures for text categorization (2001) 0.01
    0.010418028 = product of:
      0.020836055 = sum of:
        0.020836055 = product of:
          0.031254083 = sum of:
            0.009410121 = weight(_text_:a in 1595) [ClassicSimilarity], result of:
              0.009410121 = score(doc=1595,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 1595, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1595)
            0.021843962 = weight(_text_:h in 1595) [ClassicSimilarity], result of:
              0.021843962 = score(doc=1595,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 1595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1595)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a method that exploits the hierarchical structure of an indexing vocabulary to guide the development and training of machine learning methods for automatic text categorization. We present the design of a hierarchical classifier based an the divide-and-conquer principle. The method is evaluated using backpropagation neural networks, such as the machine learning algorithm, that leam to assign MeSH categories to a subset of MEDLINE records. Comparisons with traditional Rocchio's algorithm adapted for text categorization, as well as flat neural network classifiers, are provided. The results indicate that the use of hierarchical structures improves Performance significantly.
    Source
    Advances in classification research, vol.10: proceedings of the 10th ASIS SIG/CR Classification Research Workshop. Ed.: Albrechtsen, H. u. J.E. Mai
    Type
    a
  13. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.01
    0.010332656 = product of:
      0.020665312 = sum of:
        0.020665312 = product of:
          0.061995935 = sum of:
            0.061995935 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.061995935 = score(doc=611,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Date
    22. 8.2009 12:54:24
  14. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.01
    0.009818392 = product of:
      0.019636784 = sum of:
        0.019636784 = product of:
          0.029455176 = sum of:
            0.0046568024 = weight(_text_:a in 2741) [ClassicSimilarity], result of:
              0.0046568024 = score(doc=2741,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.088261776 = fieldWeight in 2741, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
            0.024798373 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
              0.024798373 = score(doc=2741,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15476047 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This study seeks to find out how human beings cluster Web pages naturally. Twenty Web pages retrieved by the Northem Light search engine for each of 10 queries were sorted by 3 subjects into categories that were natural or meaningful to them. lt was found that different subjects clustered the same set of Web pages quite differently and created different categories. The average inter-subject similarity of the clusters created was a low 0.27. Subjects created an average of 5.4 clusters for each sorting. The categories constructed can be divided into 10 types. About 1/3 of the categories created were topical. Another 20% of the categories relate to the degree of relevance or usefulness. The rest of the categories were subject-independent categories such as format, purpose, authoritativeness and direction to other sources. The authors plan to develop automatic methods for categorizing Web pages using the common categories created by the subjects. lt is hoped that the techniques developed can be used by Web search engines to automatically organize Web pages retrieved into categories that are natural to users. 1. Introduction The World Wide Web is an increasingly important source of information for people globally because of its ease of access, the ease of publishing, its ability to transcend geographic and national boundaries, its flexibility and heterogeneity and its dynamic nature. However, Web users also find it increasingly difficult to locate relevant and useful information in this vast information storehouse. Web search engines, despite their scope and power, appear to be quite ineffective. They retrieve too many pages, and though they attempt to rank retrieved pages in order of probable relevance, often the relevant documents do not appear in the top-ranked 10 or 20 documents displayed. Several studies have found that users do not know how to use the advanced features of Web search engines, and do not know how to formulate and re-formulate queries. Users also typically exert minimal effort in performing, evaluating and refining their searches, and are unwilling to scan more than 10 or 20 items retrieved (Jansen, Spink, Bateman & Saracevic, 1998). This suggests that the conventional ranked-list display of search results does not satisfy user requirements, and that better ways of presenting and summarizing search results have to be developed. One promising approach is to group retrieved pages into clusters or categories to allow users to navigate immediately to the "promising" clusters where the most useful Web pages are likely to be located. This approach has been adopted by a number of search engines (notably Northem Light) and search agents.
    Date
    12. 9.2004 9:56:22
    Type
    a
  15. Reiner, U.: Automatische DDC-Klassifizierung bibliografischer Titeldatensätze der Deutschen Nationalbibliografie (2009) 0.01
    0.009818392 = product of:
      0.019636784 = sum of:
        0.019636784 = product of:
          0.029455176 = sum of:
            0.0046568024 = weight(_text_:a in 3284) [ClassicSimilarity], result of:
              0.0046568024 = score(doc=3284,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.088261776 = fieldWeight in 3284, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
            0.024798373 = weight(_text_:22 in 3284) [ClassicSimilarity], result of:
              0.024798373 = score(doc=3284,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15476047 = fieldWeight in 3284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Das Klassifizieren von Objekten (z. B. Fauna, Flora, Texte) ist ein Verfahren, das auf menschlicher Intelligenz basiert. In der Informatik - insbesondere im Gebiet der Künstlichen Intelligenz (KI) - wird u. a. untersucht, inweit Verfahren, die menschliche Intelligenz benötigen, automatisiert werden können. Hierbei hat sich herausgestellt, dass die Lösung von Alltagsproblemen eine größere Herausforderung darstellt, als die Lösung von Spezialproblemen, wie z. B. das Erstellen eines Schachcomputers. So ist "Rybka" der seit Juni 2007 amtierende Computerschach-Weltmeistern. Inwieweit Alltagsprobleme mit Methoden der Künstlichen Intelligenz gelöst werden können, ist eine - für den allgemeinen Fall - noch offene Frage. Beim Lösen von Alltagsproblemen spielt die Verarbeitung der natürlichen Sprache, wie z. B. das Verstehen, eine wesentliche Rolle. Den "gesunden Menschenverstand" als Maschine (in der Cyc-Wissensbasis in Form von Fakten und Regeln) zu realisieren, ist Lenat's Ziel seit 1984. Bezüglich des KI-Paradeprojektes "Cyc" gibt es CycOptimisten und Cyc-Pessimisten. Das Verstehen der natürlichen Sprache (z. B. Werktitel, Zusammenfassung, Vorwort, Inhalt) ist auch beim intellektuellen Klassifizieren von bibliografischen Titeldatensätzen oder Netzpublikationen notwendig, um diese Textobjekte korrekt klassifizieren zu können. Seit dem Jahr 2007 werden von der Deutschen Nationalbibliothek nahezu alle Veröffentlichungen mit der Dewey Dezimalklassifikation (DDC) intellektuell klassifiziert.
    Die Menge der zu klassifizierenden Veröffentlichungen steigt spätestens seit der Existenz des World Wide Web schneller an, als sie intellektuell sachlich erschlossen werden kann. Daher werden Verfahren gesucht, um die Klassifizierung von Textobjekten zu automatisieren oder die intellektuelle Klassifizierung zumindest zu unterstützen. Seit 1968 gibt es Verfahren zur automatischen Dokumentenklassifizierung (Information Retrieval, kurz: IR) und seit 1992 zur automatischen Textklassifizierung (ATC: Automated Text Categorization). Seit immer mehr digitale Objekte im World Wide Web zur Verfügung stehen, haben Arbeiten zur automatischen Textklassifizierung seit ca. 1998 verstärkt zugenommen. Dazu gehören seit 1996 auch Arbeiten zur automatischen DDC-Klassifizierung bzw. RVK-Klassifizierung von bibliografischen Titeldatensätzen und Volltextdokumenten. Bei den Entwicklungen handelt es sich unseres Wissens bislang um experimentelle und keine im ständigen Betrieb befindlichen Systeme. Auch das VZG-Projekt Colibri/DDC ist seit 2006 u. a. mit der automatischen DDC-Klassifizierung befasst. Die diesbezüglichen Untersuchungen und Entwicklungen dienen zur Beantwortung der Forschungsfrage: "Ist es möglich, eine inhaltlich stimmige DDC-Titelklassifikation aller GVK-PLUS-Titeldatensätze automatisch zu erzielen?"
    Date
    22. 1.2010 14:41:24
    Type
    a
  16. Prabowo, R.; Jackson, M.; Burden, P.; Knoell, H.-D.: Ontology-based automatic classification for the Web pages : design, implementation and evaluation (2002) 0.01
    0.009247085 = product of:
      0.01849417 = sum of:
        0.01849417 = product of:
          0.027741255 = sum of:
            0.009017859 = weight(_text_:a in 3383) [ClassicSimilarity], result of:
              0.009017859 = score(doc=3383,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1709182 = fieldWeight in 3383, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3383)
            0.018723397 = weight(_text_:h in 3383) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3383,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3383)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, we have witnessed the continual growth in the use of ontologies in order to provide a mechanism to enable machine reasoning. This paper describes an automatic classifier, which focuses on the use of ontologies for classifying Web pages with respect to the Dewey Decimal Classification (DDC) and Library of Congress Classification (LCC) schemes. Firstly, we explain how these ontologies can be built in a modular fashion, and mapped into DDC and LCC. Secondly, we propose the formal definition of a DDC-LCC and an ontology-classification-scheme mapping. Thirdly, we explain the way the classifier uses these ontologies to assist classification. Finally, an experiment in which the accuracy of the classifier was evaluated is presented. The experiment shows that our approach results an improved classification in terms of accuracy. This improvement, however, comes at a cost in a low overage ratio due to the incompleteness of the ontologies used
  17. Oberhauser, O.: Automatisches Klassifizieren und Bibliothekskataloge (2005) 0.01
    0.008849675 = product of:
      0.01769935 = sum of:
        0.01769935 = product of:
          0.026549023 = sum of:
            0.0047050603 = weight(_text_:a in 4099) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=4099,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 4099, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4099)
            0.021843962 = weight(_text_:h in 4099) [ClassicSimilarity], result of:
              0.021843962 = score(doc=4099,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 4099, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4099)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Bibliothek Technik Recht. Festschrift für Peter Kubalek zum 60. Geburtstag. Hrsg.: H. Hrusa
    Type
    a
  18. Kanaan, G.; Al-Shalabi, R.; Ghwanmeh, S.; Al-Ma'adeed, H.: ¬A comparison of text-classification techniques applied to Arabic text (2009) 0.01
    0.008569533 = product of:
      0.017139066 = sum of:
        0.017139066 = product of:
          0.025708599 = sum of:
            0.006985203 = weight(_text_:a in 3096) [ClassicSimilarity], result of:
              0.006985203 = score(doc=3096,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13239266 = fieldWeight in 3096, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3096)
            0.018723397 = weight(_text_:h in 3096) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3096,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3096)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Many algorithms have been implemented for the problem of text classification. Most of the work in this area was carried out for English text. Very little research has been carried out on Arabic text. The nature of Arabic text is different than that of English text, and preprocessing of Arabic text is more challenging. This paper presents an implementation of three automatic text-classification techniques for Arabic text. A corpus of 1445 Arabic text documents belonging to nine categories has been automatically classified using the kNN, Rocchio, and naïve Bayes algorithms. The research results reveal that Naïve Bayes was the best performer, followed by kNN and Rocchio.
    Type
    a
  19. Pong, J.Y.-H.; Kwok, R.C.-W.; Lau, R.Y.-K.; Hao, J.-X.; Wong, P.C.-C.: ¬A comparative study of two automatic document classification methods in a library setting (2008) 0.01
    0.008369497 = product of:
      0.016738994 = sum of:
        0.016738994 = product of:
          0.02510849 = sum of:
            0.0095056575 = weight(_text_:a in 2532) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=2532,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 2532, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2532)
            0.015602832 = weight(_text_:h in 2532) [ClassicSimilarity], result of:
              0.015602832 = score(doc=2532,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 2532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2532)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In current library practice, trained human experts usually carry out document cataloguing and indexing based on a manual approach. With the explosive growth in the number of electronic documents available on the Internet and digital libraries, it is increasingly difficult for library practitioners to categorize both electronic documents and traditional library materials using just a manual approach. To improve the effectiveness and efficiency of document categorization at the library setting, more in-depth studies of using automatic document classification methods to categorize library items are required. Machine learning research has advanced rapidly in recent years. However, applying machine learning techniques to improve library practice is still a relatively unexplored area. This paper illustrates the design and development of a machine learning based automatic document classification system to alleviate the manual categorization problem encountered within the library setting. Two supervised machine learning algorithms have been tested. Our empirical tests show that supervised machine learning algorithms in general, and the k-nearest neighbours (KNN) algorithm in particular, can be used to develop an effective document classification system to enhance current library practice. Moreover, some concrete recommendations regarding how to practically apply the KNN algorithm to develop automatic document classification in a library setting are made. To our best knowledge, this is the first in-depth study of applying the KNN algorithm to automatic document classification based on the widely used LCC classification scheme adopted by many large libraries.
    Type
    a
  20. Na, J.-C.; Sui, H.; Khoo, C.; Chan, S.; Zhou, Y.: Effectiveness of simple linguistic processing in automatic sentiment classification of product reviews (2004) 0.01
    0.007441449 = product of:
      0.014882898 = sum of:
        0.014882898 = product of:
          0.022324346 = sum of:
            0.0067215143 = weight(_text_:a in 2624) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=2624,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 2624, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2624)
            0.015602832 = weight(_text_:h in 2624) [ClassicSimilarity], result of:
              0.015602832 = score(doc=2624,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 2624, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2624)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper reports a study in automatic sentiment classification, i.e., automatically classifying documents as expressing positive or negative Sentiments/opinions. The study investigates the effectiveness of using SVM (Support Vector Machine) an various text features to classify product reviews into recommended (positive Sentiment) and not recommended (negative sentiment). Compared with traditional topical classification, it was hypothesized that syntactic and semantic processing of text would be more important for sentiment classification. In the first part of this study, several different approaches, unigrams (individual words), selected words (such as verb, adjective, and adverb), and words labelled with part-of-speech tags were investigated. A sample of 1,800 various product reviews was retrieved from Review Centre (www.reviewcentre.com) for the study. 1,200 reviews were used for training, and 600 for testing. Using SVM, the baseline unigram approach obtained an accuracy rate of around 76%. The use of selected words obtained a marginally better result of 77.33%. Error analysis suggests various approaches for improving classification accuracy: use of negation phrase, making inference from superficial words, and solving the problem of comments an parts. The second part of the study that is in progress investigates the use of negation phrase through simple linguistic processing to improve classification accuracy. This approach increased the accuracy rate up to 79.33%.
    Type
    a

Languages

  • e 80
  • d 13
  • a 1
  • More… Less…

Types

  • a 84
  • el 11
  • m 1
  • r 1
  • x 1
  • More… Less…