Search (44 results, page 3 of 3)

  • × theme_ss:"Automatisches Klassifizieren"
  • × year_i:[2010 TO 2020}
  1. Borodin, Y.; Polishchuk, V.; Mahmud, J.; Ramakrishnan, I.V.; Stent, A.: Live and learn from mistakes : a lightweight system for document classification (2013) 0.00
    0.0014403724 = product of:
      0.012963352 = sum of:
        0.012963352 = weight(_text_:of in 2722) [ClassicSimilarity], result of:
          0.012963352 = score(doc=2722,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 2722, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2722)
      0.11111111 = coord(1/9)
    
    Abstract
    We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a "balanced state" for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by "leashing" the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.
  2. Yilmaz, T.; Ozcan, R.; Altingovde, I.S.; Ulusoy, Ö.: Improving educational web search for question-like queries through subject classification (2019) 0.00
    0.0014403724 = product of:
      0.012963352 = sum of:
        0.012963352 = weight(_text_:of in 5041) [ClassicSimilarity], result of:
          0.012963352 = score(doc=5041,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 5041, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5041)
      0.11111111 = coord(1/9)
    
    Abstract
    Students use general web search engines as their primary source of research while trying to find answers to school-related questions. Although search engines are highly relevant for the general population, they may return results that are out of educational context. Another rising trend; social community question answering websites are the second choice for students who try to get answers from other peers online. We attempt discovering possible improvements in educational search by leveraging both of these information sources. For this purpose, we first implement a classifier for educational questions. This classifier is built by an ensemble method that employs several regular learning algorithms and retrieval based approaches that utilize external resources. We also build a query expander to facilitate classification. We further improve the classification using search engine results and obtain 83.5% accuracy. Although our work is entirely based on the Turkish language, the features could easily be mapped to other languages as well. In order to find out whether search engine ranking can be improved in the education domain using the classification model, we collect and label a set of query results retrieved from a general web search engine. We propose five ad-hoc methods to improve search ranking based on the idea that the query-document category relation is an indicator of relevance. We evaluate these methods for overall performance, varying query length and based on factoid and non-factoid queries. We show that some of the methods significantly improve the rankings in the education domain.
  3. Malo, P.; Sinha, A.; Wallenius, J.; Korhonen, P.: Concept-based document classification using Wikipedia and value function (2011) 0.00
    0.0014112709 = product of:
      0.012701439 = sum of:
        0.012701439 = weight(_text_:of in 4948) [ClassicSimilarity], result of:
          0.012701439 = score(doc=4948,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 4948, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4948)
      0.11111111 = coord(1/9)
    
    Abstract
    In this article, we propose a new concept-based method for document classification. The conceptual knowledge associated with the words is drawn from Wikipedia. The purpose is to utilize the abundant semantic relatedness information available in Wikipedia in an efficient value function-based query learning algorithm. The procedure learns the value function by solving a simple linear programming problem formulated using the training documents. The learning involves a step-wise iterative process that helps in generating a value function with an appropriate set of concepts (dimensions) chosen from a collection of concepts. Once the value function is formulated, it is utilized to make a decision between relevance and irrelevance. The value assigned to a particular document from the value function can be further used to rank the documents according to their relevance. Reuters newswire documents have been used to evaluate the efficacy of the procedure. An extensive comparison with other frameworks has been performed. The results are promising.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.12, S.2496-2511
  4. Wang, H.; Hong, M.: Supervised Hebb rule based feature selection for text classification (2019) 0.00
    0.0013148742 = product of:
      0.011833867 = sum of:
        0.011833867 = weight(_text_:of in 5036) [ClassicSimilarity], result of:
          0.011833867 = score(doc=5036,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19316542 = fieldWeight in 5036, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5036)
      0.11111111 = coord(1/9)
    
    Abstract
    Text documents usually contain high dimensional non-discriminative (irrelevant and noisy) terms which lead to steep computational costs and poor learning performance of text classification. One of the effective solutions for this problem is feature selection which aims to identify discriminative terms from text data. This paper proposes a method termed "Hebb rule based feature selection (HRFS)". HRFS is based on supervised Hebb rule and assumes that terms and classes are neurons and select terms under the assumption that a term is discriminative if it keeps "exciting" the corresponding classes. This assumption can be explained as "a term is highly correlated with a class if it is able to keep "exciting" the class according to the original Hebb postulate. Six benchmarking datasets are used to compare HRFS with other seven feature selection methods. Experimental results indicate that HRFS is effective to achieve better performance than the compared methods. HRFS can identify discriminative terms in the view of synapse between neurons. Moreover, HRFS is also efficient because it can be described in the view of matrix operation to decrease complexity of feature selection.

Languages

  • e 43
  • d 1
  • More… Less…

Types

  • a 42
  • el 2
  • s 1
  • More… Less…