Search (7 results, page 1 of 1)

  • × theme_ss:"Begriffstheorie"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Hjoerland, B.: Concept theory (2009) 0.02
    0.015219918 = product of:
      0.030439837 = sum of:
        0.030439837 = product of:
          0.060879674 = sum of:
            0.060879674 = weight(_text_:systems in 3461) [ClassicSimilarity], result of:
              0.060879674 = score(doc=3461,freq=10.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.37961838 = fieldWeight in 3461, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
  2. Bauer, G.: ¬Die vielseitigen Anwendungsmöglichkeiten des Kategorienprinzips bei der Wissensorganisation (2006) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 5710) [ClassicSimilarity], result of:
              0.049491543 = score(doc=5710,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 5710, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5710)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.22-33
  3. Thellefsen, M.: ¬The dynamics of information representation and knowledge mediation (2006) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 170) [ClassicSimilarity], result of:
              0.043561947 = score(doc=170,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 170, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper present an alternative approach to knowledge organization based on semiotic reasoning. The semantic distance between domain specific terminology and KOS is analyzed by means of their different sign systems. It is argued that a faceted approach may provide the means needed to minimize the gap between knowledge domains and KOS.
  4. Pathak, L.P.: Concept-term relationship and a classified schedule of isolates for the term 'concept' (2000) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 6046) [ClassicSimilarity], result of:
              0.038116705 = score(doc=6046,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 6046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6046)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Draws attention to the efforts to define the terms 'concept' and 'term' and suggests a schedule of isolates for the term 'concept' under eight headings: 0. Concept; 1. Theoretical aspects; 2. Learning theory and Psychological aspects; 3. Origin, evolution, formation, construction; 4. Semantic aspects; 5.Terms and Terminology; 6. Usage and discipline-specific applications; and 7. Concepts and ISAR systems. The schedule also includes about 150 aspects/isolate terms related to 'concept' along with the name of the authors who have used them. The schedule is intended to help in identifying the various aspects of a concept with the help of the terms used for them. These aspects may guide to some extent, in dissecting and seeing the social science concepts from various point of views
  5. Jouis, C.: Logic of relationships (2002) 0.01
    0.008837775 = product of:
      0.01767555 = sum of:
        0.01767555 = product of:
          0.0353511 = sum of:
            0.0353511 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
              0.0353511 = score(doc=1204,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19345059 = fieldWeight in 1204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1204)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1.12.2002 11:12:22
  6. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.01
    0.008837775 = product of:
      0.01767555 = sum of:
        0.01767555 = product of:
          0.0353511 = sum of:
            0.0353511 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
              0.0353511 = score(doc=5588,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19345059 = fieldWeight in 5588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11.12.2019 19:00:22
  7. Gerbé, O.; Mineau, G.W.; Keller, R.K.: Conceptual graphs, metamodelling, and notation of concepts : fundamental issues (2000) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 5078) [ClassicSimilarity], result of:
              0.03267146 = score(doc=5078,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 5078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5078)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge management, in particular corporate knowledge management, is a challenge companies and researchers have to meet. The conceptual graph formalism is a good candidate for the representation of corporate knowledge, and for the development of knowledge management systems. But many of the issues concerning the use of conceptual graphs as a metalanguage have not been worked out in detail. By introducing a function that maps higher level to lower level, this paper clarifies the metalevel semantics, notation and manipulation of concepts in the conceptual graph formalism. In addition, this function allows metamodeling activities to take place using the CG notation