Search (4 results, page 1 of 1)

  • × theme_ss:"Citation indexing"
  • × theme_ss:"Informetrie"
  • × year_i:[1990 TO 2000}
  1. Milman, B.L.: Individual co-citation clusters as nuclei of complete and dynamic informetric models of scientific and technological areas (1994) 0.02
    0.020057783 = product of:
      0.08023113 = sum of:
        0.08023113 = weight(_text_:evolution in 37) [ClassicSimilarity], result of:
          0.08023113 = score(doc=37,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.4096403 = fieldWeight in 37, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0546875 = fieldNorm(doc=37)
      0.25 = coord(1/4)
    
    Abstract
    Describes the construction of improved informetric models of individual scientific and technological areas on the basis of individual co citation clusters. The developed methodology of replenishment of research front with accidently absent papers describes the model more completely. Proposes the simple method of cluster 'dynamization' for the study of evolution of research area. The transition under consideration from co citation clusters to lexical maps of papers and patents enables the monitoring of the relationshuip between R and D in a given technological area. Provides the example from modern chemical engineering of Pressure-Swing Adsorption
  2. Garfield, E.: From citation indexes to informetrics : is the tail now wagging the dog? (1998) 0.02
    0.020057783 = product of:
      0.08023113 = sum of:
        0.08023113 = weight(_text_:evolution in 2809) [ClassicSimilarity], result of:
          0.08023113 = score(doc=2809,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.4096403 = fieldWeight in 2809, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2809)
      0.25 = coord(1/4)
    
    Abstract
    Provides a synoptic review and history of citation indexes and their evolution into research evaluation tools including a discussion of the use of bibliometric data for evaluating US institutions (academic departments) by the National Research Council (NRC). Covers the origin and uses of periodical impact factors, validation studies of citation analysis, information retrieval and dissemination (current awareness), citation consciousness, historiography and science mapping, Citation Classics, and the history of contemporary science. Illustrates the retrieval of information by cited reference searching, especially as it applies to avoiding duplicated research. Discusses the 15 year cumulative impacts of periodicals and the percentage of uncitedness, the emergence of scientometrics, old boy networks, and citation frequency distributions. Concludes with observations about the future of citation indexing
  3. Scharnhorst, A.: Citation - networks, science landscapes and evolutionary strategies (1998) 0.02
    0.020057783 = product of:
      0.08023113 = sum of:
        0.08023113 = weight(_text_:evolution in 5126) [ClassicSimilarity], result of:
          0.08023113 = score(doc=5126,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.4096403 = fieldWeight in 5126, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5126)
      0.25 = coord(1/4)
    
    Abstract
    The construction of virtual science landscapes based on citation networks and the strategic use of the information therein shed new light on the issues of the evolution of the science system and possibilities for control. Leydesdorff's approach to citation theory described in his 1998 article (see this issue of LISA) takes into account the dual layered character of communication networks and the second order nature of the science system. This perspective may help to sharpen the awareness of scientists and science policy makers for possible feedback loops within actions and activities in the science system, and probably nonlinear phenomena resulting therefrom. Sketches an additional link to geometrically oriented evolutionary theories and uses a specific landscape concept as a framework for some comments
  4. Leydesdorff, L.: Theories of citation? (1999) 0.02
    0.020057783 = product of:
      0.08023113 = sum of:
        0.08023113 = weight(_text_:evolution in 5130) [ClassicSimilarity], result of:
          0.08023113 = score(doc=5130,freq=2.0), product of:
            0.19585751 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03697776 = queryNorm
            0.4096403 = fieldWeight in 5130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5130)
      0.25 = coord(1/4)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication