Search (141 results, page 2 of 8)

  • × theme_ss:"Citation indexing"
  • × theme_ss:"Informetrie"
  1. Leydesdorff, L.: Theories of citation? (1999) 0.00
    0.0045800544 = product of:
      0.013740162 = sum of:
        0.013740162 = product of:
          0.027480325 = sum of:
            0.027480325 = weight(_text_:of in 5130) [ClassicSimilarity], result of:
              0.027480325 = score(doc=5130,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.40111488 = fieldWeight in 5130, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5130)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication
    Footnote
    Lead paper in a thematic issue devoted to 'Theories of citation?'
  2. Leydesdorff, L.: Dynamic and evolutionary updates of classificatory schemes in scientific journal structures (2002) 0.00
    0.0045800544 = product of:
      0.013740162 = sum of:
        0.013740162 = product of:
          0.027480325 = sum of:
            0.027480325 = weight(_text_:of in 1249) [ClassicSimilarity], result of:
              0.027480325 = score(doc=1249,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.40111488 = fieldWeight in 1249, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1249)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Can the inclusion of new journals in the Science Citation Index be used for the indication of structural change in the database, and how can this change be compared with reorganizations of reiations among previously included journals? Change in the number of journals (n) is distinguished from change in the number of journal categories (m). Although the number of journals can be considered as a given at each moment in time, the number of journal categories is based an a reconstruction that is time-stamped ex post. The reflexive reconstruction is in need of an update when new information becomes available in a next year. Implications of this shift towards an evolutionary perspective are specified.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.12, S.987-994
  3. Hjerppe, R.: ¬An outline of bibliometrics and citation analysis (1980) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 1115) [ClassicSimilarity], result of:
              0.0267832 = score(doc=1115,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 1115, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=1115)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Imprint
    Stockholm : Royal Institute of Technology Library
  4. Moed, H.F.: Differences in the construction of SCI based bibliometric indicators among various producers : a first overview (1996) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 5073) [ClassicSimilarity], result of:
              0.0267832 = score(doc=5073,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 5073, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5073)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Discusses basic technical methodological issues with respect to data collection and the construction of bibliometric indicators, particular at the macro or meso level. Focuses on the use of the Science Citation Index. Aims to highlight important decisions that have to be made in the process of data collection and the construction of bibliometric indicators. Illustrates differences in the methodologies applied by several important producers of bibliometric indicators, thus illustrating the complexity of the process of 'standardization'
  5. Osareh, F.: Bibliometrics, citation analysis and co-citation analysis : a review of literature II (1996) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 7105) [ClassicSimilarity], result of:
              0.0267832 = score(doc=7105,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 7105, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7105)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Part 2 of a 2 part article reviewing the technique of bibliometrics and one of its most widely used methods, citation analysis. Reports on studies of author co-citation, periodical by periodical citation analysis and country by country citation analysis in addition to the mapping of science as an application of citation analysis. Considers the limitations, problems and reliability of citation analysis
  6. Wouters, P.: ¬The signs of science (1998) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 1023) [ClassicSimilarity], result of:
              0.0267832 = score(doc=1023,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 1023, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1023)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Since the 'Science Citation Index' emerged within the system of scientific communication in 1964, an intense controversy about its character has been raging: in what sense can citation analysis be trusted? This debate can be characterized as the confrontation of different perspectives on science. Discusses the citation representation of science: the way the citation creates a new reality of as well as in the world of science; the main features of this reality; and some implications for science and science policy
    Footnote
    Paper presented at the 6th conference of the International Society for Scientometrics and Informetrics, Jerusalem, 16-19 June 1997
  7. MacRoberts, M.H.; MacRoberts, B.R.: Problems of citation analysis : a study of uncited and seldom-cited influences (2010) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 3308) [ClassicSimilarity], result of:
              0.0267832 = score(doc=3308,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 3308, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3308)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    To determine influences on the production of a scientific article, the content of the article must be studied. We examined articles in biogeography and found that most of the influence is not cited, specific types of articles that are influential are cited while other types of that also are influential are not cited, and work that is uncited and seldom cited is used extensively. As a result, evaluative citation analysis should take uncited work into account.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.1-12
  8. Chen, C.; Cribbin, T.; Macredie, R.; Morar, S.: Visualizing and tracking the growth of competing paradigms : two case studies (2002) 0.00
    0.004428855 = product of:
      0.013286565 = sum of:
        0.013286565 = product of:
          0.02657313 = sum of:
            0.02657313 = weight(_text_:of in 602) [ClassicSimilarity], result of:
              0.02657313 = score(doc=602,freq=28.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38787308 = fieldWeight in 602, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=602)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article we demonstrate the use of an integrative approach to visualizing and tracking the development of scientific paradigms. This approach is designed to reveal the long-term process of competing scientific paradigms. We assume that a cluster of highly cited and cocited scientific publications in a cocitation network represents the core of a predominant scientific paradigm. The growth of a paradigm is depicted and animated through the rise of citation rates and the movement of its core cluster towards the center of the cocitation network. We study two cases of competing scientific paradigms in the real world: (1) the causes of mass extinctions, and (2) the connections between mad cow disease and a new variant of a brain disease in humans-vCJD. Various theoretical and practical issues concerning this approach are discussed.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.678.689
  9. Chen, C.; Paul, R.J.; O'Keefe, B.: Fitting the Jigsaw of citation : information visualization in domain analysis (2001) 0.00
    0.004267752 = product of:
      0.012803256 = sum of:
        0.012803256 = product of:
          0.025606511 = sum of:
            0.025606511 = weight(_text_:of in 5766) [ClassicSimilarity], result of:
              0.025606511 = score(doc=5766,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.37376386 = fieldWeight in 5766, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5766)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Domain visualization is one of the new research fronts resulted from the proliferation of information visualization, aiming to reveal the essence of a knowledge domain. Information visualization plays an integral role in modeling and representing intellectual structures associated with scientific disciplines. In this article, the domain of computer graphics is visualized based on author cocitation patterns derived from an 18-year span of the prestigious IEEE Computer Graphics and Applications (1982-1999). This domain visualization utilizes a series of visualization and animation techniques, including author cocitation maps, citation time lines, animation of a highdimensional specialty space, and institutional profiles. This approach not only augments traditional domain analysis and the understanding of scientific disciplines, but also produces a persistent and shared knowledge space for researchers to keep track the development of knowledge more effectively. The results of the domain visualization are discussed and triangulated in a broader context of the computer graphics field
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.4, S.315-330
  10. Marshakova-Shaikevich, I.: Bibliometric maps of field of science (2005) 0.00
    0.004267752 = product of:
      0.012803256 = sum of:
        0.012803256 = product of:
          0.025606511 = sum of:
            0.025606511 = weight(_text_:of in 1069) [ClassicSimilarity], result of:
              0.025606511 = score(doc=1069,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.37376386 = fieldWeight in 1069, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1069)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The present paper is devoted to two directions in algorithmic classificatory procedures: the journal co-citation analysis as an example of citation networks and lexical analysis of keywords in the titles and texts. What is common to those approaches is the general idea of normalization of deviations of the observed data from the mathematical expectation. The application of the same formula leads to discovery of statistically significant links between objects (journals in one case, keywords - in the other). The results of the journal co-citation analysis are reflected in tables and map for field "Women's Studies" and for field "Information Science and Library Science". An experimental attempt at establishing textual links between words was carried out on two samples from SSCI Data base: (1) EDUCATION and (2) ETHICS. The EDUCATION file included 2180 documents (of which 751 had abstracts); the ETHICS file included 807 documents (289 abstracts). Some examples of the results of this pilot study are given in tabular form . The binary links between words discovered in this way may form triplets or other groups with more than two member words.
  11. Száva-Kováts, E.: Indirect-collective referencing (ICR) in the elite journal literature of physics : II: a literature science study on the level of communications (2002) 0.00
    0.0042494745 = product of:
      0.012748423 = sum of:
        0.012748423 = product of:
          0.025496846 = sum of:
            0.025496846 = weight(_text_:of in 180) [ClassicSimilarity], result of:
              0.025496846 = score(doc=180,freq=58.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.37216315 = fieldWeight in 180, product of:
                  7.615773 = tf(freq=58.0), with freq of:
                    58.0 = termFreq=58.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=180)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In the author's three previous articles dealing with the ICR phenomenon (JASIS, 49, 1998, 477-481; 50, 1999, 1284-1294; JASIST, 52, 2001, 201-211) the nature, life course, and importance of this phenomenon of scientific literature was demonstrated. It was shown that the quantity of nonindexed indirect-collective references in The Physical Review now alone exceeds many times over the quantity of formal references listed in the Science Citation Index as "citations." It was shown that the ICR phenomenon is present in all the 44 elite physics journals of a representative sample of this literature. The bibliometrically very heterogeneous sample is very homogeneous regarding the presence and frequency of the ICR phenomenon. However, no real connection could be found between the simple degree of documentedness and the presence and frequency of the ICR phenomenon on the journal level of the sample. The present article reports the findings of the latest ICR investigation carried out on the level of communications of the representative sample. Correlation calculations were carried out in the stock of all 458 communications containing the ICR phenomenon as a statistical population, and within this population also in the groups of communications of the "normal" and the "letter" journals, and the "short communications." The correlation analysis did not find notable statistical correlation between the simple and specific degree of documentedness of a communication and the number of works cited in it by ICR act(s) either in the total population or in the selected groups. There is no correlation either statistical or real (i.e., cause-and-effect) between the documentedness of scientific communications made by their authors and the presence and intensity of the ICR method used by their authors. However, in reality there exists a very strong connection between these two statistically independent variables: both depend on the referencing author, on his/her subjectivity and barely limited subjective free will. This subjective free will shapes the stock of the formal-direct references of scientific communications, thereby placing the achievements cited in this way and their creators into the (indexed) showcase of present Big Science. The same free will decides on the use or nonuse of the ICR method, and in the case of use also on the intensity with which the method is used
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.1, S.47-56
  12. Bornmann, L.; Daniel, H.D.: What do citation counts measure? : a review of studies on citing behavior (2008) 0.00
    0.004184875 = product of:
      0.012554625 = sum of:
        0.012554625 = product of:
          0.02510925 = sum of:
            0.02510925 = weight(_text_:of in 1729) [ClassicSimilarity], result of:
              0.02510925 = score(doc=1729,freq=36.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36650562 = fieldWeight in 1729, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1729)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to present a narrative review of studies on the citing behavior of scientists, covering mainly research published in the last 15 years. Based on the results of these studies, the paper seeks to answer the question of the extent to which scientists are motivated to cite a publication not only to acknowledge intellectual and cognitive influences of scientific peers, but also for other, possibly non-scientific, reasons. Design/methodology/approach - The review covers research published from the early 1960s up to mid-2005 (approximately 30 studies on citing behavior-reporting results in about 40 publications). Findings - The general tendency of the results of the empirical studies makes it clear that citing behavior is not motivated solely by the wish to acknowledge intellectual and cognitive influences of colleague scientists, since the individual studies reveal also other, in part non-scientific, factors that play a part in the decision to cite. However, the results of the studies must also be deemed scarcely reliable: the studies vary widely in design, and their results can hardly be replicated. Many of the studies have methodological weaknesses. Furthermore, there is evidence that the different motivations of citers are "not so different or 'randomly given' to such an extent that the phenomenon of citation would lose its role as a reliable measure of impact". Originality/value - Given the increasing importance of evaluative bibliometrics in the world of scholarship, the question "What do citation counts measure?" is a particularly relevant and topical issue.
    Source
    Journal of documentation. 64(2008) no.1, S.45-80
  13. Heneberg, P.: Lifting the fog of scientometric research artifacts : on the scientometric analysis of environmental tobacco smoke research (2013) 0.00
    0.004184875 = product of:
      0.012554625 = sum of:
        0.012554625 = product of:
          0.02510925 = sum of:
            0.02510925 = weight(_text_:of in 613) [ClassicSimilarity], result of:
              0.02510925 = score(doc=613,freq=36.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36650562 = fieldWeight in 613, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Previous analyses identified research on environmental tobacco smoke to be subject to strong fluctuations as measured by both quantitative and qualitative indicators. The evolution of search algorithms (based on the Web of Science and Web of Knowledge database platforms) was used to show the impact of errors of omission and commission in the outcomes of scientometric research. Optimization of the search algorithm led to the complete reassessment of previously published findings on the performance of environmental tobacco smoke research. Instead of strong continuous growth, the field of environmental tobacco smoke research was shown to experience stagnation or slow growth since mid-1990s when evaluated quantitatively. Qualitative analysis revealed steady but slow increase in the citation rate and decrease in uncitedness. Country analysis revealed the North-European countries as leaders in environmental tobacco smoke research (when the normalized results were evaluated both quantitatively and qualitatively), whereas the United States ranked first only when assessing the total number of papers produced. Scientometric research artifacts, including both errors of omission and commission, were shown to be capable of completely obscuring the real output of the chosen research field.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.334-344
  14. Scharnhorst, A.: Citation - networks, science landscapes and evolutionary strategies (1998) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 5126) [ClassicSimilarity], result of:
              0.024856888 = score(doc=5126,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 5126, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5126)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The construction of virtual science landscapes based on citation networks and the strategic use of the information therein shed new light on the issues of the evolution of the science system and possibilities for control. Leydesdorff's approach to citation theory described in his 1998 article (see this issue of LISA) takes into account the dual layered character of communication networks and the second order nature of the science system. This perspective may help to sharpen the awareness of scientists and science policy makers for possible feedback loops within actions and activities in the science system, and probably nonlinear phenomena resulting therefrom. Sketches an additional link to geometrically oriented evolutionary theories and uses a specific landscape concept as a framework for some comments
    Footnote
    Contribution to a thematic issue devoted to 'Theories of citation?
  15. Whitley, K.M.: Analysis of SciFinder Scholar and Web of Science citation searches (2002) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 1255) [ClassicSimilarity], result of:
              0.024856888 = score(doc=1255,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 1255, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1255)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Chemical Abstracts Service recently unveiled citation searching in Chemical Abstracts. With Chemical Abstracts and Science Citation Index both now available for citation searching, this study compares the duplication and uniqueness of citing references for works of chemistry researchers for the years 1999-2001. The two indexes cover very similar source material, so one would expect the citation results to be very similar. This analysis of SciFinder Scholar and Web of Science shows some important differences as the databases are currently offered. Authors and institutions using citation counts as measures of scientific productivity should take note.
    Object
    Web of science
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.14, S.1210-1215
  16. Morris, S.A.; Yen, G.; Wu, Z.; Asnake, B.: Time line visualization of research fronts (2003) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 1452) [ClassicSimilarity], result of:
              0.024856888 = score(doc=1452,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 1452, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1452)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Research fronts, defined as clusters of documents that tend to cite a fixed, time invariant set of base documents, are plotted as time lines for visualization and exploration. Using a set of documents related to the subject of anthrax research, this article illustrates the construction, exploration, and interpretation of time lines for the purpose of identifying and visualizing temporal changes in research activity through journal articles. Such information is useful for presentation to meinbers of expert panels used for technology forecasting.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.413-422
  17. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 1065) [ClassicSimilarity], result of:
              0.024856888 = score(doc=1065,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 1065, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  18. Moed, H.F.; Bruin, R.E.D.; Leeuwen, T.N.V.: New bibliometric tools for the assessment of national research performance : database description, overview of indicators and first applications (1995) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 3376) [ClassicSimilarity], result of:
              0.02460194 = score(doc=3376,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 3376, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Gives an outline of a new bibliometric database based upon all articles published by authors from the Netherlands and processed during 1980-1993 by ISI for the SCI, SSCI and AHCI. Describes various types of information added to the database: data on articles citing the Dutch publications; detailed citation data on ISI journals and subfields; and a classification system of the main publishing organizations. Also gives an overview of the types of bibliometric indicators constructed. and discusses their relationship to indicators developed by other researchers in the field. Gives 2 applications to illustrate the potentials of the database and of the bibliometric indicators derived from it: one that represents a synthesis of 'classical' macro indicator studies on the one hand and bibliometric analyses of research groups on the other; and a second that gives for the first time a detailed analysis of a country's publications per institutional sector
  19. Frandsen, T.F.; Rousseau, R.: Article impact calculated over arbitrary periods (2005) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 3264) [ClassicSimilarity], result of:
              0.02460194 = score(doc=3264,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 3264, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper we address the various formulations of impact of articles, usually groups of articles as gauged by citations that these articles receive over a certain period of time. The journal impact factor, as published by ISI (Philadelphia, PA), is the best-known example of a formulation of impact of journals (considered as a set of articles) but many others have been defined in the literature. Impact factors have varying publication and citation periods and the chosen length of these periods enables, e.g., a distinction between synchronous and diachronous impact factors. It is shown how an impact factor for the general case can be defined. Two alternatives for a general impact factor are proposed, depending an whether different publication years are seen as a whole, and hence treating each one of them differently, or by operating with citation periods of identical length but allowing each publication period different starting points.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.1, S.58-62
  20. Jacobs, N.; Woodfield, J.; Morris, A.: Using local citation data to relate the use of journal articles by academic researchers to the coverage of full-text document access systems (2000) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 4541) [ClassicSimilarity], result of:
              0.02460194 = score(doc=4541,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 4541, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4541)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The methodology and findings are presented of an empirical study comparing local citation patterns with the holdings lists of a number of sources of journal articles. These sources were the British Library Document Supply Centre (BLDSC) and the BL inside service, library holdings, ProQuest Direct, SearchBank, EiText and a linking system including both the Geobase database and the BLDSC. The value of local citation figures is discussed, as is the concept of a "core" of journal titles, from both theoretical and practical perspectives. Using these figures to represent the local use of journal articles, the coverage of the document sources was found to vary widely. Unsurprisingly, the BLDSC was found to offer the widest coverage. Newer, electronic systems generally fared less well, but may offer other advantages.
    Source
    Journal of documentation. 56(2000) no.5, S.563-581

Authors

Languages

  • e 135
  • d 5
  • chi 1
  • More… Less…

Types

  • a 135
  • m 3
  • s 3
  • el 1
  • r 1
  • More… Less…

Classifications