Search (50 results, page 1 of 3)

  • × theme_ss:"Citation indexing"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.11
    0.106169276 = product of:
      0.21233855 = sum of:
        0.21233855 = sum of:
          0.17079961 = weight(_text_:journals in 994) [ClassicSimilarity], result of:
            0.17079961 = score(doc=994,freq=8.0), product of:
              0.25656942 = queryWeight, product of:
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.05109862 = queryNorm
              0.66570526 = fieldWeight in 994, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
          0.041538943 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
            0.041538943 = score(doc=994,freq=2.0), product of:
              0.17893866 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05109862 = queryNorm
              0.23214069 = fieldWeight in 994, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
      0.5 = coord(1/2)
    
    Abstract
    Citation rates are becoming increasingly important in judging the research quality of journals, institutions and departments, and individual faculty. This paper looks at the pattern of citations across different management science journals and over time. A stochastic model is proposed which views the generating mechanism of citations as a gamma mixture of Poisson processes generating overall a negative binomial distribution. This is tested empirically with a large sample of papers published in 1990 from six management science journals and found to fit well. The model is extended to include obsolescence, i.e., that the citation rate for a paper varies over its cited lifetime. This leads to the additional citations distribution which shows that future citations are a linear function of past citations with a time-dependent and decreasing slope. This is also verified empirically in a way that allows different obsolescence functions to be fitted to the data. Conclusions concerning the predictability of future citations, and future research in this area are discussed.
    Date
    26.12.2007 19:22:05
  2. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.08
    0.081156254 = product of:
      0.16231251 = sum of:
        0.16231251 = sum of:
          0.12077357 = weight(_text_:journals in 201) [ClassicSimilarity], result of:
            0.12077357 = score(doc=201,freq=4.0), product of:
              0.25656942 = queryWeight, product of:
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.05109862 = queryNorm
              0.47072473 = fieldWeight in 201, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
          0.041538943 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
            0.041538943 = score(doc=201,freq=2.0), product of:
              0.17893866 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05109862 = queryNorm
              0.23214069 = fieldWeight in 201, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=201)
      0.5 = coord(1/2)
    
    Abstract
    Research patterns could enhance understanding of the Information Systems (IS) field. Citation analysis is the methodology commonly used to determine such research patterns. In this study, the citation methodology is applied to one of the top-ranked Information Systems conferences - International Conference on Information Systems (ICIS). Information is extracted from papers in the proceedings of ICIS 2000 to 2002. A total of 145 base articles and 4,226 citations are used. Research patterns are obtained using total citations, citations per journal or conference, and overlapping citations. We then provide the citation ranking of journals and conferences. We also examine the difference between the citation ranking in this study and the ranking of IS journals and IS conferences in other studies. Based on the comparison, we confirm that IS research is a multidisciplinary research area. We also identify the most cited papers and authors in the IS research area, and the organizations most active in producing papers in the top-rated IS conference. We discuss the findings and implications of the study.
    Date
    3. 1.2007 17:22:03
  3. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.07
    0.07207237 = product of:
      0.14414474 = sum of:
        0.14414474 = sum of:
          0.08539981 = weight(_text_:journals in 2763) [ClassicSimilarity], result of:
            0.08539981 = score(doc=2763,freq=2.0), product of:
              0.25656942 = queryWeight, product of:
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.05109862 = queryNorm
              0.33285263 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.05874494 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.05874494 = score(doc=2763,freq=4.0), product of:
              0.17893866 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05109862 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  4. Leydesdorff, L.: Dynamic and evolutionary updates of classificatory schemes in scientific journal structures (2002) 0.05
    0.049816553 = product of:
      0.099633105 = sum of:
        0.099633105 = product of:
          0.19926621 = sum of:
            0.19926621 = weight(_text_:journals in 1249) [ClassicSimilarity], result of:
              0.19926621 = score(doc=1249,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.77665615 = fieldWeight in 1249, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1249)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Can the inclusion of new journals in the Science Citation Index be used for the indication of structural change in the database, and how can this change be compared with reorganizations of reiations among previously included journals? Change in the number of journals (n) is distinguished from change in the number of journal categories (m). Although the number of journals can be considered as a given at each moment in time, the number of journal categories is based an a reconstruction that is time-stamped ex post. The reflexive reconstruction is in need of an update when new information becomes available in a next year. Implications of this shift towards an evolutionary perspective are specified.
  5. González, L.; Campanario, J.M.: Structure of the impact factor of journals included in the Social Sciences Citation Index : citations from documents labeled "Editorial Material" (2007) 0.05
    0.047739945 = product of:
      0.09547989 = sum of:
        0.09547989 = product of:
          0.19095978 = sum of:
            0.19095978 = weight(_text_:journals in 75) [ClassicSimilarity], result of:
              0.19095978 = score(doc=75,freq=10.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.7442812 = fieldWeight in 75, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=75)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigated how citations from documents labeled by the Institute for Scientific Information (ISI) as "editorial material" contribute to the impact factor of academic journals in which they were published. Our analysis is based on records corresponding to the documents classified by the ISI as editorial material published in journals covered by the Social Sciences Citation Index between 1999 and 2003 (50,273 records corresponding to editorial material published in 2,374 journals). The results appear to rule out widespread manipulation of the impact factor by academic journals publishing large amounts of editorial material with many citations to the journal itself as a strategy to increase the impact factor.
  6. Száva-Kováts, E.: Indirect-collective referencing (ICR) in the elite journal literature of physics : I: a literature science study on the journal level (2001) 0.04
    0.043142404 = product of:
      0.08628481 = sum of:
        0.08628481 = product of:
          0.17256962 = sum of:
            0.17256962 = weight(_text_:journals in 5180) [ClassicSimilarity], result of:
              0.17256962 = score(doc=5180,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.672604 = fieldWeight in 5180, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5180)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the second bibliometric paper SzavaKovtas uses ``indirectcollective references, ICR'' to mean such instances as those in which an author refers to, ``the references contained therein,'' when referring to another source. Having previously shown a high instance of occurrences in Physical Reviews, he now uses the January 1997 issues of 40 journals from the ISI physics category plus two optics journals, an instrumentation journal, and a physics journal launched in 1997, to locate ICR. The phenomena exists in all but one of the sampled journals and in the next, but unsampled, issue of that journal. Overall 17% of papers sampled display ICR with little fluctuation within internal categories.
  7. Leydesdorff, L.; Bihui, J.: Mapping the Chinese Science Citation Database in terms of aggregated journal-journal citation relations (2005) 0.04
    0.042699903 = product of:
      0.08539981 = sum of:
        0.08539981 = product of:
          0.17079961 = sum of:
            0.17079961 = weight(_text_:journals in 4813) [ClassicSimilarity], result of:
              0.17079961 = score(doc=4813,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.66570526 = fieldWeight in 4813, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4813)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Methods developed for mapping the journal structure contained in aggregated journal-journal citations in the Science Citation Index (SCI; Thomson ISI, 2002) are applied to the Chinese Science Citation Database of the Chinese Academy of Sciences. This database covered 991 journals in 2001, of which only 37 originally had English titles; only 31 of which were covered by the SCI. Using factor-analytical and graph-analytical techniques, the authors show that the journal relations are dually structured. The main structure is the intellectual organization of the journals in journal groups (as in the international SCI), but the university-based journals provide an institutional layer that orients this structure towards practical ends (e.g., agriculture). This mechanism of integration is further distinguished from the role of general science journals. The Chinese Science Citation Database thus exhibits the characteristics of "Mode 2" or transdisciplinary science in the production of scientific knowledge more than its Western counterpart does. The contexts of application lead to correlation among the components.
  8. Leydesdorff, L.: Can scientific journals be classified in terms of aggregated journal-journal citation relations using the Journal Citation Reports? (2006) 0.04
    0.042699903 = product of:
      0.08539981 = sum of:
        0.08539981 = product of:
          0.17079961 = sum of:
            0.17079961 = weight(_text_:journals in 5046) [ClassicSimilarity], result of:
              0.17079961 = score(doc=5046,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.66570526 = fieldWeight in 5046, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5046)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aggregated citation relations among journals included in the Science Citation Index provide us with a huge matrix, which can be analyzed in various ways. By using principal component analysis or factor analysis, the factor scores can be employed as indicators of the position of the cited journals in the citing dimensions of the database. Unrotated factor scores are exact, and the extraction of principal components can be made stepwise because the principal components are independent. Rotation may be needed for the designation, but in the rotated solution a model is assumed. This assumption can be legitimated on pragmatic or theoretical grounds. Because the resulting outcomes remain sensitive to the assumptions in the model, an unambiguous classification is no longer possible in this case. However, the factor-analytic solutions allow us to test classifications against the structures contained in the database; in this article the process will be demonstrated for the delineation of a set of biochemistry journals.
  9. Leydesdorff, L.: Caveats for the use of citation indicators in research and journal evaluations (2008) 0.04
    0.042699903 = product of:
      0.08539981 = sum of:
        0.08539981 = product of:
          0.17079961 = sum of:
            0.17079961 = weight(_text_:journals in 1361) [ClassicSimilarity], result of:
              0.17079961 = score(doc=1361,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.66570526 = fieldWeight in 1361, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1361)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aging of publications, percentage of self-citations, and impact vary from journal to journal within fields of science. The assumption that citation and publication practices are homogenous within specialties and fields of science is invalid. Furthermore, the delineation of fields and among specialties is fuzzy. Institutional units of analysis and persons may move between fields or span different specialties. The match between the citation index and institutional profiles varies among institutional units and nations. The respective matches may heavily affect the representation of the units. Non-Institute of Scientific Information (ISI) journals are increasingly cornered into transdisciplinary Mode-2 functions with the exception of specialist journals publishing in languages other than English. An externally cited impact factor can be calculated for these journals. The citation impact of non-ISI journals will be demonstrated using Science and Public Policy as the example.
  10. Bensman, S.J.: Distributional differences of the impact factor in the sciences versus the social sciences : an analysis of the probabilistic structure of the 2005 journal citation reports (2008) 0.04
    0.042699903 = product of:
      0.08539981 = sum of:
        0.08539981 = product of:
          0.17079961 = sum of:
            0.17079961 = weight(_text_:journals in 1953) [ClassicSimilarity], result of:
              0.17079961 = score(doc=1953,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.66570526 = fieldWeight in 1953, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1953)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines the probability structure of the 2005 Science Citation Index (SCI) and Social Sciences Citation Index (SSCI) Journal Citation Reports (JCR) by analyzing the Impact Factor distributions of their journals. The distribution of the SCI journals corresponded with a distribution generally modeled by the negative binomial distribution, whereas the SSCI distribution fit the Poisson distribution modeling random, rare events. Both Impact Factor distributions were positively skewed - the SCI much more so than the SSCI - indicating excess variance. One of the causes of this excess variance was that the journals highest in the Impact Factor in both JCRs tended to class in subject categories well funded by the National Institutes of Health. The main reason for the SCI Impact Factor distribution being more skewed than the SSCI one was that review journals defining disciplinary paradigms play a much more important role in the sciences than in the social sciences.
  11. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.04
    0.039783288 = product of:
      0.079566576 = sum of:
        0.079566576 = product of:
          0.15913315 = sum of:
            0.15913315 = weight(_text_:journals in 5176) [ClassicSimilarity], result of:
              0.15913315 = score(doc=5176,freq=10.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.6202343 = fieldWeight in 5176, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  12. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.04
    0.039783288 = product of:
      0.079566576 = sum of:
        0.079566576 = product of:
          0.15913315 = sum of:
            0.15913315 = weight(_text_:journals in 82) [ClassicSimilarity], result of:
              0.15913315 = score(doc=82,freq=10.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.6202343 = fieldWeight in 82, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
  13. Nederhof, A.J.; Visser, M.S.: Quantitative deconstruction of citation impact indicators : waxing field impact but waning journal impact (2004) 0.04
    0.036979202 = product of:
      0.073958404 = sum of:
        0.073958404 = product of:
          0.14791681 = sum of:
            0.14791681 = weight(_text_:journals in 4419) [ClassicSimilarity], result of:
              0.14791681 = score(doc=4419,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5765177 = fieldWeight in 4419, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4419)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In two case studies of research units, reference values used to benchmark research performance appeared to show contradictory results: the average citation level in the subfields (FCSm) increased world-wide, while the citation level of the journals (JCSm) decreased, where concomitant changes were expected. Explanations were sought in: a shift in preference of document types; a change in publication preference for subfields; and changes in journal coverage. Publishing in newly covered journals with a low impact had a negative effect on impact ratios. However, the main factor behind the increase in FCSm was the distribution of articles across the five-year block periods that were studied. Publication in lower impact journals produced a lagging JCSm. Actual values of JCSm, FCSm, and citations per publication (CPP) values are not very informative either about research performance, or about the development of impact over time in a certain subfield with block indicators. Normalized citation impact indicators are free from such effects and should be consulted primarily in research performance assessments.
  14. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.04
    0.036979202 = product of:
      0.073958404 = sum of:
        0.073958404 = product of:
          0.14791681 = sum of:
            0.14791681 = weight(_text_:journals in 4427) [ClassicSimilarity], result of:
              0.14791681 = score(doc=4427,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5765177 = fieldWeight in 4427, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aggregated journal-journal citation matrix derived from Journal Citation Reports 2001 can be decomposed into a unique subject classification using the graph-analytical algorithm of bi-connected components. This technique was recently incorporated in software tools for social network analysis. The matrix can be assessed in terms of its decomposability using articulation points which indicate overlap between the components. The articulation points of this set did not exhibit a next-order network of "general science" journals. However, the clusters differ in size and in terms of the internal density of their relations. A full classification of the journals is provided in the Appendix. The clusters can also be extracted and mapped for the visualization.
  15. Abt, H.A.; Garfield, E.: Is the relationship between numbers of references and paper lengths the same for all sciences? (2002) 0.04
    0.036979202 = product of:
      0.073958404 = sum of:
        0.073958404 = product of:
          0.14791681 = sum of:
            0.14791681 = weight(_text_:journals in 5223) [ClassicSimilarity], result of:
              0.14791681 = score(doc=5223,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5765177 = fieldWeight in 5223, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5223)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It has been shown in the physical sciences that a paper's length is related to its number of references in a linear manner. Abt and Garfield here look at the life and social sciences with the thought that if the relation holds the citation counts will provide a measure of relative importance across these disciplines. In the life sciences 200 research papers from 1999-2000 were scanned in each of 10 journals to produce counts of 1000 word normalized pages. In the social sciences an average of 70 research papers in nine journals were scanned for the two-year period. Papers of average length in the various sciences have the same average number of references within plus or minus 17%. A look at the 30 to 60 papers over the two years in 18 review journals indicates twice the references of research papers of the same length.
  16. Vaughan, L.; Shaw, D.: Web citation data for impact assessment : a comparison of four science disciplines (2005) 0.04
    0.03558325 = product of:
      0.0711665 = sum of:
        0.0711665 = product of:
          0.142333 = sum of:
            0.142333 = weight(_text_:journals in 3880) [ClassicSimilarity], result of:
              0.142333 = score(doc=3880,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5547544 = fieldWeight in 3880, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3880)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The number and type of Web citations to journal articles in four areas of science are examined: biology, genetics, medicine, and multidisciplinary sciences. For a sample of 5,972 articles published in 114 journals, the median Web citation counts per journal article range from 6.2 in medicine to 10.4 in genetics. About 30% of Web citations in each area indicate intellectual impact (citations from articles or class readings, in contrast to citations from bibliographic services or the author's or journal's home page). Journals receiving more Web citations also have higher percentages of citations indicating intellectual impact. There is significant correlation between the number of citations reported in the databases from the Institute for Scientific Information (ISI, now Thomson Scientific) and the number of citations retrieved using the Google search engine (Web citations). The correlation is much weaker for journals published outside the United Kingdom or United States and for multidisciplinary journals. Web citation numbers are higher than ISI citation counts, suggesting that Web searches might be conducted for an earlier or a more fine-grained assessment of an article's impact. The Web-evident impact of non-UK/USA publications might provide a balance to the geographic or cultural biases observed in ISI's data, although the stability of Web citation counts is debatable.
  17. Zhao, D.; Strotmann, A.: Can citation analysis of Web publications better detect research fronts? (2007) 0.04
    0.03558325 = product of:
      0.0711665 = sum of:
        0.0711665 = product of:
          0.142333 = sum of:
            0.142333 = weight(_text_:journals in 471) [ClassicSimilarity], result of:
              0.142333 = score(doc=471,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5547544 = fieldWeight in 471, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present evidence that in some research fields, research published in journals and reported on the Web may collectively represent different evolutionary stages of the field, with journals lagging a few years behind the Web on average, and that a "two-tier" scholarly communication system may therefore be evolving. We conclude that in such fields, (a) for detecting current research fronts, author co-citation analyses (ACA) using articles published on the Web as a data source can outperform traditional ACAs using articles published in journals as data, and that (b) as a result, it is important to use multiple data sources in citation analysis studies of scholarly communication for a complete picture of communication patterns. Our evidence stems from comparing the respective intellectual structures of the XML research field, a subfield of computer science, as revealed from three sets of ACA covering two time periods: (a) from the field's beginnings in 1996 to 2001, and (b) from 2001 to 2006. For the first time period, we analyze research articles both from journals as indexed by the Science Citation Index (SCI) and from the Web as indexed by CiteSeer. We follow up by an ACA of SCI data for the second time period. We find that most trends in the evolution of this field from the first to the second time period that we find when comparing ACA results from the SCI between the two time periods already were apparent in the ACA results from CiteSeer during the first time period.
  18. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.04
    0.035225622 = product of:
      0.070451245 = sum of:
        0.070451245 = product of:
          0.14090249 = sum of:
            0.14090249 = weight(_text_:journals in 1065) [ClassicSimilarity], result of:
              0.14090249 = score(doc=1065,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.54917884 = fieldWeight in 1065, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  19. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.03
    0.030816004 = product of:
      0.061632007 = sum of:
        0.061632007 = product of:
          0.123264015 = sum of:
            0.123264015 = weight(_text_:journals in 5767) [ClassicSimilarity], result of:
              0.123264015 = score(doc=5767,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.48043144 = fieldWeight in 5767, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
  20. Brown, C.: ¬The evolution of preprints in the scholarly communication of physicists and astronomers (2001) 0.03
    0.030816004 = product of:
      0.061632007 = sum of:
        0.061632007 = product of:
          0.123264015 = sum of:
            0.123264015 = weight(_text_:journals in 5184) [ClassicSimilarity], result of:
              0.123264015 = score(doc=5184,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.48043144 = fieldWeight in 5184, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5184)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In one of two bibliometric papers in this issue Brown looks at formal publication and citation of Eprints as shown by the policies and practices of 37 top tier physics journals, and by citation trends in ISI's SciSearch database and Journal Citation Reports. Citation analysis was carried out if Eprint cites were indicated by editor response, instruction to authors sections, reports in the literature, or actual examination of citation lists. Total contribution to 12 archives and their citation counts in the journals were compiled. Of the 13 editors surveyed that responded, 8 published papers that had appeared in the archive. Two of these required removal from the archive at publication; two of the 13 did not publish papers that have appeared as Eprints. A review journal that solicits its contributions allowed citation of Eprints. Seven allowed citations to Eprints, but were less than enthusiastic.Nearly 36,000 citations were made to the 12 archives. Citations to the 37 journals and their impact factors remain constant over the period of 1991 to 1998. Eprint citations appear to peak about 3 years after appearance as do citations to published papers. Contribution to the archives, and their use as measured by citation, is clearly growing. Citation form and publishing policy varies from journal to journal.