Search (10 results, page 1 of 1)

  • × theme_ss:"Citation indexing"
  • × year_i:[2020 TO 2030}
  1. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.03
    0.025256727 = product of:
      0.050513454 = sum of:
        0.050513454 = sum of:
          0.011259848 = weight(_text_:a in 40) [ClassicSimilarity], result of:
            0.011259848 = score(doc=40,freq=14.0), product of:
              0.04772363 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.041389145 = queryNorm
              0.23593865 = fieldWeight in 40, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=40)
          0.039253604 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
            0.039253604 = score(doc=40,freq=2.0), product of:
              0.14493774 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.041389145 = queryNorm
              0.2708308 = fieldWeight in 40, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=40)
      0.5 = coord(1/2)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
    Type
    a
  2. Min, C.; Chen, Q.; Yan, E.; Bu, Y.; Sun, J.: Citation cascade and the evolution of topic relevance (2021) 0.00
    0.002279905 = product of:
      0.00455981 = sum of:
        0.00455981 = product of:
          0.00911962 = sum of:
            0.00911962 = weight(_text_:a in 62) [ClassicSimilarity], result of:
              0.00911962 = score(doc=62,freq=18.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19109234 = fieldWeight in 62, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=62)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation analysis, as a tool for quantitative studies of science, has long emphasized direct citation relations, leaving indirect or high-order citations overlooked. However, a series of early and recent studies demonstrate the existence of indirect and continuous citation impact across generations. Adding to the literature on high-order citations, we introduce the concept of a citation cascade: the constitution of a series of subsequent citing events initiated by a certain publication. We investigate this citation structure by analyzing more than 450,000 articles and over 6 million citation relations. We show that citation impact exists not only within the three generations documented in prior research but also in much further generations. Still, our experimental results indicate that two to four generations are generally adequate to trace a work's scientific impact. We also explore specific structural properties-such as depth, width, structural virality, and size-which account for differences among individual citation cascades. Finally, we find evidence that it is more important for a scientific work to inspire trans-domain (or indirectly related domain) works than to receive only intradomain recognition in order to achieve high impact. Our methods and findings can serve as a new tool for scientific evaluation and the modeling of scientific history.
    Type
    a
  3. Daquino, M.; Peroni, S.; Shotton, D.; Colavizza, G.; Ghavimi, B.; Lauscher, A.; Mayr, P.; Romanello, M.; Zumstein, P.: ¬The OpenCitations Data Model (2020) 0.00
    0.0020392092 = product of:
      0.0040784185 = sum of:
        0.0040784185 = product of:
          0.008156837 = sum of:
            0.008156837 = weight(_text_:a in 38) [ClassicSimilarity], result of:
              0.008156837 = score(doc=38,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.1709182 = fieldWeight in 38, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=38)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A variety of schemas and ontologies are currently used for the machine-readable description of bibliographic entities and citations. This diversity, and the reuse of the same ontology terms with different nuances, generates inconsistencies in data. Adoption of a single data model would facilitate data integration tasks regardless of the data supplier or context application. In this paper we present the OpenCitations Data Model (OCDM), a generic data model for describing bibliographic entities and citations, developed using Semantic Web technologies. We also evaluate the effective reusability of OCDM according to ontology evaluation practices, mention existing users of OCDM, and discuss the use and impact of OCDM in the wider open science community.
    Type
    a
  4. Xie, J.; Lu, H.; Kang, L.; Cheng, Y.: Citing criteria and its effects on researcher's intention to cite : a mixed-method study (2022) 0.00
    0.0020392092 = product of:
      0.0040784185 = sum of:
        0.0040784185 = product of:
          0.008156837 = sum of:
            0.008156837 = weight(_text_:a in 634) [ClassicSimilarity], result of:
              0.008156837 = score(doc=634,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.1709182 = fieldWeight in 634, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=634)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explored users' criteria for citation decisions and investigated the effects on users' intention to cite using a mixed-method approach. A qualitative study was conducted first, where 16 citing criteria were identified based on interviews and inductive analysis. The findings were then used to develop hypotheses and extend the information adoption model. A questionnaire was designed to collect data from users in Chinese universities to test the research model. The findings indicated that pleasure, topicality, and functionality significantly increased users' perceived information usefulness, while familiarity and accessibility significantly enhanced users' perceived ease of use. Information usefulness and information ease of use further contributed to users' intention to cite with adjusted R2 equaling 44.6%. It is also found that perceived academic quality based on 5 antecedents (i.e., reliability, comprehensiveness, novelty, author credibility, and source reputation) significantly increased users' pleasure. Implications and limitations were provided.
    Type
    a
  5. Huang, S.; Qian, J.; Huang, Y.; Lu, W.; Bu, Y.; Yang, J.; Cheng, Q.: Disclosing the relationship between citation structure and future impact of a publication (2022) 0.00
    0.0020106873 = product of:
      0.0040213745 = sum of:
        0.0040213745 = product of:
          0.008042749 = sum of:
            0.008042749 = weight(_text_:a in 621) [ClassicSimilarity], result of:
              0.008042749 = score(doc=621,freq=14.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.1685276 = fieldWeight in 621, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Each section header of an article has its distinct communicative function. Citations from distinct sections may be different regarding citing motivation. In this paper, we grouped section headers with similar functions as a structural function and defined the distribution of citations from structural functions for a paper as its citation structure. We aim to explore the relationship between citation structure and the future impact of a publication and disclose the relative importance among citations from different structural functions. Specifically, we proposed two citation counting methods and a citation life cycle identification method, by which the regression data were built. Subsequently, we employed a ridge regression model to predict the future impact of the paper and analyzed the relative weights of regressors. Based on documents collected from the Association for Computational Linguistics Anthology website, our empirical experiments disclosed that functional structure features improve the prediction accuracy of citation count prediction and that there exist differences among citations from different structural functions. Specifically, at the early stage of citation lifetime, citations from Introduction and Method are particularly important for perceiving future impact of papers, and citations from Result and Conclusion are also vital. However, early accumulation of citations from the Background seems less important.
    Type
    a
  6. Jiang, X.; Liu, J.: Extracting the evolutionary backbone of scientific domains : the semantic main path network analysis approach based on citation context analysis (2023) 0.00
    0.0018615347 = product of:
      0.0037230693 = sum of:
        0.0037230693 = product of:
          0.0074461387 = sum of:
            0.0074461387 = weight(_text_:a in 948) [ClassicSimilarity], result of:
              0.0074461387 = score(doc=948,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.15602624 = fieldWeight in 948, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Main path analysis is a popular method for extracting the scientific backbone from the citation network of a research domain. Existing approaches ignored the semantic relationships between the citing and cited publications, resulting in several adverse issues, in terms of coherence of main paths and coverage of significant studies. This paper advocated the semantic main path network analysis approach to alleviate these issues based on citation function analysis. A wide variety of SciBERT-based deep learning models were designed for identifying citation functions. Semantic citation networks were built by either including important citations, for example, extension, motivation, usage and similarity, or excluding incidental citations like background and future work. Semantic main path network was built by merging the top-K main paths extracted from various time slices of semantic citation network. In addition, a three-way framework was proposed for the quantitative evaluation of main path analysis results. Both qualitative and quantitative analysis on three research areas of computational linguistics demonstrated that, compared to semantics-agnostic counterparts, different types of semantic main path networks provide complementary views of scientific knowledge flows. Combining them together, we obtained a more precise and comprehensive picture of domain evolution and uncover more coherent development pathways between scientific ideas.
    Type
    a
  7. Cui, Y.; Wang, Y.; Liu, X.; Wang, X.; Zhang, X.: Multidimensional scholarly citations : characterizing and understanding scholars' citation behaviors (2023) 0.00
    0.0016993409 = product of:
      0.0033986818 = sum of:
        0.0033986818 = product of:
          0.0067973635 = sum of:
            0.0067973635 = weight(_text_:a in 847) [ClassicSimilarity], result of:
              0.0067973635 = score(doc=847,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.14243183 = fieldWeight in 847, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=847)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study investigates scholars' citation behaviors from a fine-grained perspective. Specifically, each scholarly citation is considered multidimensional rather than logically unidimensional (i.e., present or absent). Thirty million articles from PubMed were accessed for use in empirical research, in which a total of 15 interpretable features of scholarly citations were constructed and grouped into three main categories. Each category corresponds to one aspect of the reasons and motivations behind scholars' citation decision-making during academic writing. Using about 500,000 pairs of actual and randomly generated scholarly citations, a series of Random Forest-based classification experiments were conducted to quantitatively evaluate the correlation between each constructed citation feature and citation decisions made by scholars. Our experimental results indicate that citation proximity is the category most relevant to scholars' citation decision-making, followed by citation authority and citation inertia. However, big-name scholars whose h-indexes rank among the top 1% exhibit a unique pattern of citation behaviors-their citation decision-making correlates most closely with citation inertia, with the correlation nearly three times as strong as that of their ordinary counterparts. Hopefully, the empirical findings presented in this paper can bring us closer to characterizing and understanding the complex process of generating scholarly citations in academia.
    Type
    a
  8. Safder, I.; Ali, M.; Aljohani, N.R.; Nawaz, R.; Hassan, S.-U.: Neural machine translation for in-text citation classification (2023) 0.00
    0.0016993409 = product of:
      0.0033986818 = sum of:
        0.0033986818 = product of:
          0.0067973635 = sum of:
            0.0067973635 = weight(_text_:a in 1053) [ClassicSimilarity], result of:
              0.0067973635 = score(doc=1053,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.14243183 = fieldWeight in 1053, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1053)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The quality of scientific publications can be measured by quantitative indices such as the h-index, Source Normalized Impact per Paper, or g-index. However, these measures lack to explain the function or reasons for citations and the context of citations from citing publication to cited publication. We argue that citation context may be considered while calculating the impact of research work. However, mining citation context from unstructured full-text publications is a challenging task. In this paper, we compiled a data set comprising 9,518 citations context. We developed a deep learning-based architecture for citation context classification. Unlike feature-based state-of-the-art models, our proposed focal-loss and class-weight-aware BiLSTM model with pretrained GloVe embedding vectors use citation context as input to outperform them in multiclass citation context classification tasks. Our model improves on the baseline state-of-the-art by achieving an F1 score of 0.80 with an accuracy of 0.81 for citation context classification. Moreover, we delve into the effects of using different word embeddings on the performance of the classification model and draw a comparison between fastText, GloVe, and spaCy pretrained word embeddings.
    Type
    a
  9. Araújo, P.C. de; Gutierres Castanha, R.C.; Hjoerland, B.: Citation indexing and indexes (2021) 0.00
    0.0015795645 = product of:
      0.003159129 = sum of:
        0.003159129 = product of:
          0.006318258 = sum of:
            0.006318258 = weight(_text_:a in 444) [ClassicSimilarity], result of:
              0.006318258 = score(doc=444,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.13239266 = fieldWeight in 444, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=444)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A citation index is a bibliographic database that provides citation links between documents. The first modern citation index was suggested by the researcher Eugene Garfield in 1955 and created by him in 1964, and it represents an important innovation to knowledge organization and information retrieval. This article describes citation indexes in general, considering the modern citation indexes, including Web of Science, Scopus, Google Scholar, Microsoft Academic, Crossref, Dimensions and some special citation indexes and predecessors to the modern citation index like Shepard's Citations. We present comparative studies of the major ones and survey theoretical problems related to the role of citation indexes as subject access points (SAP), recognizing the implications to knowledge organization and information retrieval. Finally, studies on citation behavior are presented and the influence of citation indexes on knowledge organization, information retrieval and the scientific information ecosystem is recognized.
    Type
    a
  10. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.00
    0.0010747575 = product of:
      0.002149515 = sum of:
        0.002149515 = product of:
          0.00429903 = sum of:
            0.00429903 = weight(_text_:a in 1033) [ClassicSimilarity], result of:
              0.00429903 = score(doc=1033,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.090081796 = fieldWeight in 1033, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation counts are widely used as indicators of research quality to support or replace human peer review and for lists of top cited papers, researchers, and institutions. Nevertheless, the relationship between citations and research quality is poorly evidenced. We report the first large-scale science-wide academic evaluation of the relationship between research quality and citations (field normalized citation counts), correlating them for 87,739 journal articles in 34 field-based UK Units of Assessment (UoA). The two correlate positively in all academic fields, from very weak (0.1) to strong (0.5), reflecting broadly linear relationships in all fields. We give the first evidence that the correlations are positive even across the arts and humanities. The patterns are similar for the field classification schemes of Scopus and Dimensions.ai, although varying for some individual subjects and therefore more uncertain for these. We also show for the first time that no field has a citation threshold beyond which all articles are excellent quality, so lists of top cited articles are not pure collections of excellence, and neither is any top citation percentile indicator. Thus, while appropriately field normalized citations associate positively with research quality in all fields, they never perfectly reflect it, even at high values.
    Type
    a