Search (81 results, page 4 of 5)

  • × theme_ss:"Citation indexing"
  1. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.01
    0.005461648 = product of:
      0.03276989 = sum of:
        0.03276989 = weight(_text_:computer in 5767) [ClassicSimilarity], result of:
          0.03276989 = score(doc=5767,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 5767, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5767)
      0.16666667 = coord(1/6)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
  2. Schneider, K.: Scopus contra ISI-WOS : Versuch einer vergleichenden Bewertung aus pharmakognostischer Sicht (2006) 0.01
    0.0052265706 = product of:
      0.031359423 = sum of:
        0.031359423 = weight(_text_:web in 39) [ClassicSimilarity], result of:
          0.031359423 = score(doc=39,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=39)
      0.16666667 = coord(1/6)
    
    Object
    Web of Science
  3. Sidiropoulos, A.; Manolopoulos, Y.: ¬A new perspective to automatically rank scientific conferences using digital libraries (2005) 0.01
    0.0052265706 = product of:
      0.031359423 = sum of:
        0.031359423 = weight(_text_:web in 1011) [ClassicSimilarity], result of:
          0.031359423 = score(doc=1011,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 1011, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1011)
      0.16666667 = coord(1/6)
    
    Abstract
    Citation analysis is performed in order to evaluate authors and scientific collections, such as journals and conference proceedings. Currently, two major systems exist that perform citation analysis: Science Citation Index (SCI) by the Institute for Scientific Information (ISI) and CiteSeer by the NEC Research Institute. The SCI, mostly a manual system up until recently, is based on the notion of the ISI Impact Factor, which has been used extensively for citation analysis purposes. On the other hand the CiteSeer system is an automatically built digital library using agents technology, also based on the notion of ISI Impact Factor. In this paper, we investigate new alternative notions besides the ISI impact factor, in order to provide a novel approach aiming at ranking scientific collections. Furthermore, we present a web-based system that has been built by extracting data from the Databases and Logic Programming (DBLP) website of the University of Trier. Our system, by using the new citation metrics, emerges as a useful tool for ranking scientific collections. In this respect, some first remarks are presented, e.g. on ranking conferences related to databases.
  4. Leydesdorff, L.: On the normalization and visualization of author co-citation data : Salton's Cosine versus the Jaccard index (2008) 0.01
    0.0052265706 = product of:
      0.031359423 = sum of:
        0.031359423 = weight(_text_:web in 1341) [ClassicSimilarity], result of:
          0.031359423 = score(doc=1341,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 1341, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1341)
      0.16666667 = coord(1/6)
    
    Abstract
    The debate about which similarity measure one should use for the normalization in the case of Author Co-citation Analysis (ACA) is further complicated when one distinguishes between the symmetrical co-citation - or, more generally, co-occurrence - matrix and the underlying asymmetrical citation - occurrence - matrix. In the Web environment, the approach of retrieving original citation data is often not feasible. In that case, one should use the Jaccard index, but preferentially after adding the number of total citations (i.e., occurrences) on the main diagonal. Unlike Salton's cosine and the Pearson correlation, the Jaccard index abstracts from the shape of the distributions and focuses only on the intersection and the sum of the two sets. Since the correlations in the co-occurrence matrix may be spurious, this property of the Jaccard index can be considered as an advantage in this case.
  5. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.01
    0.0052265706 = product of:
      0.031359423 = sum of:
        0.031359423 = weight(_text_:web in 3436) [ClassicSimilarity], result of:
          0.031359423 = score(doc=3436,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 3436, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.16666667 = coord(1/6)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
  6. Noruzi, A.: Google Scholar : the new generation of citation indexes (2005) 0.01
    0.0052265706 = product of:
      0.031359423 = sum of:
        0.031359423 = weight(_text_:web in 5061) [ClassicSimilarity], result of:
          0.031359423 = score(doc=5061,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 5061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5061)
      0.16666667 = coord(1/6)
    
    Abstract
    Google Scholar (http://scholar.google.com) provides a new method of locating potentially relevant articles on a given subject by identifying subsequent articles that cite a previously published article. An important feature of Google Scholar is that researchers can use it to trace interconnections among authors citing articles on the same topic and to determine the frequency with which others cite a specific article, as it has a "cited by" feature. This study begins with an overview of how to use Google Scholar for citation analysis and identifies advanced search techniques not well documented by Google Scholar. This study also compares the citation counts provided by Web of Science and Google Scholar for articles in the field of "Webometrics." It makes several suggestions for improving Google Scholar. Finally, it concludes that Google Scholar provides a free alternative or complement to other citation indexes.
  7. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.01
    0.005014823 = product of:
      0.030088935 = sum of:
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.06017787 = score(doc=613,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Source
    Password. 2002, H.6, S.22-25
  8. Garfield, E.: Citation indexes for science (1985) 0.00
    0.0043693185 = product of:
      0.02621591 = sum of:
        0.02621591 = weight(_text_:computer in 3632) [ClassicSimilarity], result of:
          0.02621591 = score(doc=3632,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.16150802 = fieldWeight in 3632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=3632)
      0.16666667 = coord(1/6)
    
    Abstract
    Indexes in general seek to provide a "key" to a body of literature intending to help the user in identifying, verifying, and/or locating individual or related items. The most common devices for collocation in indexes are authors' names and subjects. A different approach to collocating related items in an index is provided by a method called "citation indexing." Citation indexes attempt to link items through citations or references, in other works, by bringing together items cited in a particular work and the works citing a particular item. Citation indexing is based an the concept that there is a significant intellectual link between a document and each bibliographic item cited in it and that this link is useful to the scholar because an author's references to earlier writings identify relevant information to the subject of his current work. One of the major differences between the citation index and the traditional subject index is that the former, while listing current literature, also provides a retrospec tive view of past literature. While each issue of a traditional index is normally concerned only with the current literature, the citation index brings back retrospective literature in the form of cited references, thereby linking current scholarly works with earlier works. The advantages of the citation index have been considered to be its value as a tool for tracing the history of ideas or discoveries, for associating ideas between current and past work, and for evaluating works of individual authors or library collections. The concept of citation indexing is not new. It has been applied to legal literature since 1873 in a legal reference tool called Shepard's Citations. In the 1950s Eugene Garfield, a documentation consultant and founder and President of the Institute for Scientific Information (Philadelphia), developed the technique of citation indexing for scientific literature. This new application was facilitated by the availability of computer technology, resulting in a series of services: Science Citation Index (1955- ), Social Sciences Citation Index (1966- ), and the Arts & Humanities Index (1976- ). All three appear in printed versions and as machine-readable databases. In the following essay, the first in a series of articles and books elucidating the citation indexing system, Garfield traces the origin and beginning of this idea, its advantages, and the methods of preparing such indexes.
  9. Wilson, C.S.; Tenopir, C.: Local citation analysis, publishing and reading patterns : using multiple methods to evaluate faculty use of an academic library's research collection (2008) 0.00
    0.004355476 = product of:
      0.026132854 = sum of:
        0.026132854 = weight(_text_:web in 1960) [ClassicSimilarity], result of:
          0.026132854 = score(doc=1960,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 1960, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1960)
      0.16666667 = coord(1/6)
    
    Abstract
    This study assessed the intermix of local citation analysis and survey of journal use and reading patterns for evaluating an academic library's research collection. Journal articles and their cited references from faculties at the University of New South Wales were downloaded from the Web of Science (WoS) and journal impact factors from the Journal Citation Reports. The survey of the University of New South Wales (UNSW) academic staff asked both reader-related and reading-related questions. Both methods showed that academics in medicine published more and had more coauthors per paper than academics in the other faculties; however, when correlated with the number of students and academic staff, science published more and engineering published in higher impact journals. When recalled numbers of articles published were compared to actual numbers, all faculties over-estimated their productivity by nearly two-fold. The distribution of cited serial references was highly skewed with over half of the titles cited only once. The survey results corresponded with U.S. university surveys with one exception: Engineering academics reported the highest number of article readings and read mostly for research related activities. Citation analysis data showed that the UNSW library provided the majority of journals in which researchers published and cited, mostly in electronic formats. However, the availability of non-journal cited sources was low. The joint methods provided both confirmatory and contradictory results and proved useful in evaluating library research collections.
  10. Gorraiz, J.; Purnell, P.J.; Glänzel, W.: Opportunities for and limitations of the Book Citation Index (2013) 0.00
    0.004355476 = product of:
      0.026132854 = sum of:
        0.026132854 = weight(_text_:web in 966) [ClassicSimilarity], result of:
          0.026132854 = score(doc=966,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=966)
      0.16666667 = coord(1/6)
    
    Abstract
    This article offers important background information about a new product, the Book Citation Index (BKCI), launched in 2011 by Thomson Reuters. Information is illustrated by some new facts concerning The BKCI's use in bibliometrics, coverage analysis, and a series of idiosyncrasies worthy of further discussion. The BKCI was launched primarily to assist researchers identify useful and relevant research that was previously invisible to them, owing to the lack of significant book content in citation indexes such as the Web of Science. So far, the content of 33,000 books has been added to the desktops of the global research community, the majority in the arts, humanities, and social sciences fields. Initial analyses of the data from The BKCI have indicated that The BKCI, in its current version, should not be used for bibliometric or evaluative purposes. The most significant limitations to this potential application are the high share of publications without address information, the inflation of publication counts, the lack of cumulative citation counts from different hierarchical levels, and inconsistency in citation counts between the cited reference search and the book citation index. However, The BKCI is a first step toward creating a reliable and necessary citation data source for monographs - a very challenging issue, because, unlike journals and conference proceedings, books have specific requirements, and several problems emerge not only in the context of subject classification, but also in their role as cited publications and in citing publications.
  11. Robinson-García, N.; Jiménez-Contreras, E.; Torres-Salinas, D.: Analyzing data citation practices using the data citation index : a study of backup strategies of end users (2016) 0.00
    0.004355476 = product of:
      0.026132854 = sum of:
        0.026132854 = weight(_text_:web in 3225) [ClassicSimilarity], result of:
          0.026132854 = score(doc=3225,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 3225, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3225)
      0.16666667 = coord(1/6)
    
    Abstract
    We present an analysis of data citation practices based on the Data Citation Index (DCI) (Thomson Reuters). This database launched in 2012 links data sets and data studies with citations received from the other citation indexes. The DCI harvests citations to research data from papers indexed in the Web of Science. It relies on the information provided by the data repository. The findings of this study show that data citation practices are far from common in most research fields. Some differences have been reported on the way researchers cite data: Although in the areas of science and engineering & technology data sets were the most cited, in the social sciences and arts & humanities data studies play a greater role. A total of 88.1% of the records have received no citation, but some repositories show very low uncitedness rates. Although data citation practices are rare in most fields, they have expanded in disciplines such as crystallography and genomics. We conclude by emphasizing the role that the DCI could play in encouraging the consistent, standardized citation of research data-a role that would enhance their value as a means of following the research process from data collection to publication.
  12. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.00
    0.0040118583 = product of:
      0.024071148 = sum of:
        0.024071148 = product of:
          0.048142295 = sum of:
            0.048142295 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.048142295 = score(doc=1149,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    17.12.2013 11:02:22
  13. Garfield, E.: Recollections of Irving H. Sher 1924-1996 : Polymath/information scientist extraordinaire (2001) 0.00
    0.003510376 = product of:
      0.021062255 = sum of:
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 6920) [ClassicSimilarity], result of:
              0.04212451 = score(doc=6920,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 6920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6920)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    16.12.2001 14:01:22
  14. Van der Veer Martens, B.; Goodrum, G.: ¬The diffusion of theories : a functional approach (2006) 0.00
    0.003510376 = product of:
      0.021062255 = sum of:
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 5269) [ClassicSimilarity], result of:
              0.04212451 = score(doc=5269,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 5269, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5269)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 7.2006 15:20:01
  15. Campanario, J.M.: Have referees rejected some of the most-cited articles of all times? (1996) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 4215) [ClassicSimilarity], result of:
              0.03610672 = score(doc=4215,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 4215, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4215)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article a quantitative study is reported on the resistance that scientists may encounter when they do innovative work or when they attempt to publish articles that later become highly cited. A set of 205 commentaries by authors of some of the most-cited papers of all times have been examined in order to identify those articles whose authors encountered difficulty in getting his or her work published. There are 22 commentaries (10,7%) in which authors mention some difficulty or resistance in doing or publishing the research reported in the article. Three of the articles which had problems in being published are the most cited from their respective journals. According the authors' commentaries, although sometimes referees' negative evaluations can help improve the articles, in other instances referees and editors wrongly rejected the highly cited articles
  16. Snyder, H.; Bonzi, S.: Patterns of self-citation across disciplines : 1980-1989 (1998) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 3692) [ClassicSimilarity], result of:
              0.03610672 = score(doc=3692,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 3692, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3692)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 5.1999 19:33:24
  17. wst: Cut-and-paste-Wissenschaft (2003) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.03610672 = score(doc=1270,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Content
    "Mikhail Simkin und Vwani Roychowdhury von der University of Califomia, Los Angeles, haben eine in der wissenschaftlichen Gemeinschaft verbreitete Unsitte erstmals quantitativ erfasst. Die Wissenschaftler analysierten die Verbreitung von Druckfehlern in den Literaturlisten wissenschaftlicher Arbeiten (www.arxiv.org/abs/cond-mat/0212043). 78 Prozent aller zitierten Aufsätze - so schätzen die Forscher - haben die zitierenden Wissenschaftler demnach nicht gelesen, sondern nur per 'cut and paste' von einer Vorlage in ihre eigene Literaturliste übernommen. Das könne man beispielsweise abschätzen aus der Analyse fehlerhafter Seitenangaben in der Literaturliste eines 1973 veröffentlichten Aufsatzes über die Struktur zweidimensionaler Kristalle: Dieser Aufsatz ist rund 4300 mal zitiert worden. In 196 Fällen enthalten die Zitate jedoch Fehler in der Jahreszahl, dem Band der Zeitschrift oder der Seitenzahl, die als Indikatoren für cut and paste genommen werden können, denn man kann, obwohl es Milliarden Möglichkeiten gibt, nur 45 verschiedene Arten von Druckfehlern unterscheiden. In erster Näherung ergibt sich eine Obergrenze für die Zahl der `echten Leser' daher aus der Zahl der unterscheidbaren Druckfehler (45) geteilt durch die Gesamtzahl der Publikationen mit Druckfehler (196), das macht etwa 22 Prozent."
  18. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
              0.03610672 = score(doc=201,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=201)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    3. 1.2007 17:22:03
  19. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.03610672 = score(doc=994,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    26.12.2007 19:22:05
  20. Ma, N.; Guan, J.; Zhao, Y.: Bringing PageRank to the citation analysis (2008) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 2064) [ClassicSimilarity], result of:
              0.03610672 = score(doc=2064,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 2064, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2064)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    31. 7.2008 14:22:05

Years

Languages

  • e 69
  • d 12

Types

  • a 79
  • el 6
  • m 1
  • s 1
  • More… Less…