Search (2 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2000 TO 2010}
  1. Cimiano, P.; Völker, J.; Studer, R.: Ontologies on demand? : a description of the state-of-the-art, applications, challenges and trends for ontology learning from text (2006) 0.01
    0.008959521 = product of:
      0.035838082 = sum of:
        0.035838082 = weight(_text_:data in 6014) [ClassicSimilarity], result of:
          0.035838082 = score(doc=6014,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.29644224 = fieldWeight in 6014, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=6014)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies are nowadays used for many applications requiring data, services and resources in general to be interoperable and machine understandable. Such applications are for example web service discovery and composition, information integration across databases, intelligent search, etc. The general idea is that data and services are semantically described with respect to ontologies, which are formal specifications of a domain of interest, and can thus be shared and reused in a way such that the shared meaning specified by the ontology remains formally the same across different parties and applications. As the cost of creating ontologies is relatively high, different proposals have emerged for learning ontologies from structured and unstructured resources. In this article we examine the maturity of techniques for ontology learning from textual resources, addressing the question whether the state-of-the-art is mature enough to produce ontologies 'on demand'.
  2. Griffiths, T.L.; Steyvers, M.: ¬A probabilistic approach to semantic representation (2002) 0.01
    0.008447117 = product of:
      0.03378847 = sum of:
        0.03378847 = weight(_text_:data in 3671) [ClassicSimilarity], result of:
          0.03378847 = score(doc=3671,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2794884 = fieldWeight in 3671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=3671)
      0.25 = coord(1/4)
    
    Abstract
    Semantic networks produced from human data have statistical properties that cannot be easily captured by spatial representations. We explore a probabilistic approach to semantic representation that explicitly models the probability with which words occurin diffrent contexts, and hence captures the probabilistic relationships between words. We show that this representation has statistical properties consistent with the large-scale structure of semantic networks constructed by humans, and trace the origins of these properties.