Search (11 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Wissensrepräsentation"
  1. Wright, L.W.; Nardini, H.K.G.; Aronson, A.R.; Rindflesch, T.C.: Hierarchical concept indexing of full-text documents in the Unified Medical Language System Information sources Map (1999) 0.00
    0.003136654 = product of:
      0.021956576 = sum of:
        0.021956576 = product of:
          0.054891437 = sum of:
            0.03107218 = weight(_text_:retrieval in 2111) [ClassicSimilarity], result of:
              0.03107218 = score(doc=2111,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2835858 = fieldWeight in 2111, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
            0.023819257 = weight(_text_:system in 2111) [ClassicSimilarity], result of:
              0.023819257 = score(doc=2111,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 2111, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Full-text documents are a vital and rapidly growing part of online biomedical information. A single large document can contain as much information as a small database, but normally lacks the tight structure and consistent indexing of a database. Retrieval systems will often miss highly relevant parts of a document if the document as a whole appears irrelevant. Access to full-text information is further complicated by the need to search separately many disparate information resources. This research explores how these problems can be addressed by the combined use of 2 techniques: 1) natural language processing for automatic concept-based indexing of full text, and 2) methods for exploiting the structure and hierarchy of full-text documents. We describe methods for applying these techniques to a large collection of full-text documents drawn from the Health Services / Technology Assessment Text (HSTAT) database at the NLM and examine how this hierarchical concept indexing can assist both document- and source-level retrieval in the context of NLM's Information Source Map project
  2. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    0.0030837 = product of:
      0.0215859 = sum of:
        0.0215859 = product of:
          0.05396475 = sum of:
            0.025893483 = weight(_text_:retrieval in 2861) [ClassicSimilarity], result of:
              0.025893483 = score(doc=2861,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23632148 = fieldWeight in 2861, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
            0.028071264 = weight(_text_:system in 2861) [ClassicSimilarity], result of:
              0.028071264 = score(doc=2861,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.24605882 = fieldWeight in 2861, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  3. Rindflesch, T.C.; Fizsman, M.: The interaction of domain knowledge and linguistic structure in natural language processing : interpreting hypernymic propositions in biomedical text (2003) 0.00
    0.003010834 = product of:
      0.021075837 = sum of:
        0.021075837 = product of:
          0.052689593 = sum of:
            0.01830946 = weight(_text_:retrieval in 2097) [ClassicSimilarity], result of:
              0.01830946 = score(doc=2097,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 2097, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2097)
            0.034380134 = weight(_text_:system in 2097) [ClassicSimilarity], result of:
              0.034380134 = score(doc=2097,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30135927 = fieldWeight in 2097, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2097)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Interpretation of semantic propositions in free-text documents such as MEDLINE citations would provide valuable support for biomedical applications, and several approaches to semantic interpretation are being pursued in the biomedical informatics community. In this paper, we describe a methodology for interpreting linguistic structures that encode hypernymic propositions, in which a more specific concept is in a taxonomic relationship with a more general concept. In order to effectively process these constructions, we exploit underspecified syntactic analysis and structured domain knowledge from the Unified Medical Language System (UMLS). After introducing the syntactic processing on which our system depends, we focus on the UMLS knowledge that supports interpretation of hypernymic propositions. We first use semantic groups from the Semantic Network to ensure that the two concepts involved are compatible; hierarchical information in the Metathesaurus then determines which concept is more general and which more specific. A preliminary evaluation of a sample based on the semantic group Chemicals and Drugs provides 83% precision. An error analysis was conducted and potential solutions to the problems encountered are presented. The research discussed here serves as a paradigm for investigating the interaction between domain knowledge and linguistic structure in natural language processing, and could also make a contribution to research on automatic processing of discourse structure. Additional implications of the system we present include its integration in advanced semantic interpretation processors for biomedical text and its use for information extraction in specific domains. The approach has the potential to support a range of applications, including information retrieval and ontology engineering.
  4. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.00
    0.0016376477 = product of:
      0.011463534 = sum of:
        0.011463534 = product of:
          0.05731767 = sum of:
            0.05731767 = weight(_text_:retrieval in 4121) [ClassicSimilarity], result of:
              0.05731767 = score(doc=4121,freq=10.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5231199 = fieldWeight in 4121, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
  5. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.00
    0.0014647568 = product of:
      0.010253297 = sum of:
        0.010253297 = product of:
          0.051266484 = sum of:
            0.051266484 = weight(_text_:retrieval in 667) [ClassicSimilarity], result of:
              0.051266484 = score(doc=667,freq=8.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46789268 = fieldWeight in 667, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
    Series
    ¬The Information retrieval series, vol 43
    Source
    Evaluating information retrieval and access tasks. Eds.: Sakai, T., Oard, D., Kando, N. [https://doi.org/10.1007/978-981-15-5554-1_12]
  6. Helbig, H.: ¬Die semantische Struktur natürlicher Sprache : Wissensrepräsentation mit MultiNet (2001) 0.00
    9.0740033E-4 = product of:
      0.006351802 = sum of:
        0.006351802 = product of:
          0.03175901 = sum of:
            0.03175901 = weight(_text_:system in 7072) [ClassicSimilarity], result of:
              0.03175901 = score(doc=7072,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.27838376 = fieldWeight in 7072, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7072)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Die Methodik der 'Mehrschichtigen Erweiterung Semantischer Netze' (MultiNet) ist sowohl für theoretische Untersuchungen als auch für die automatische Verarbeitung natürlicher Sprache auf dem Rechner geeignet. Die vorgestellten Ergebnisse sind eingebettet in ein System von Software-Werkzeugen, die eine praktische Nutzung der MultiNet-Darstellungsmittel als Formalismus zur Bedeutungsrepräsentation sichern
  7. Rosemblat, G.; Resnick, M.P.; Auston, I.; Shin, D.; Sneiderman, C.; Fizsman, M.; Rindflesch, T.C.: Extending SemRep to the public health domain (2013) 0.00
    6.8055023E-4 = product of:
      0.0047638514 = sum of:
        0.0047638514 = product of:
          0.023819257 = sum of:
            0.023819257 = weight(_text_:system in 2096) [ClassicSimilarity], result of:
              0.023819257 = score(doc=2096,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 2096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2096)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    We describe the use of a domain-independent method to extend a natural language processing (NLP) application, SemRep (Rindflesch, Fiszman, & Libbus, 2005), based on the knowledge sources afforded by the Unified Medical Language System (UMLS®; Humphreys, Lindberg, Schoolman, & Barnett, 1998) to support the area of health promotion within the public health domain. Public health professionals require good information about successful health promotion policies and programs that might be considered for application within their own communities. Our effort seeks to improve access to relevant information for the public health profession, to help those in the field remain an information-savvy workforce. Natural language processing and semantic techniques hold promise to help public health professionals navigate the growing ocean of information by organizing and structuring this knowledge into a focused public health framework paired with a user-friendly visualization application as a way to summarize results of PubMed® searches in this field of knowledge.
  8. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.00
    6.2775286E-4 = product of:
      0.00439427 = sum of:
        0.00439427 = product of:
          0.02197135 = sum of:
            0.02197135 = weight(_text_:retrieval in 2738) [ClassicSimilarity], result of:
              0.02197135 = score(doc=2738,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 2738, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
  9. Helbig, H.: Wissensverarbeitung und die Semantik der natürlichen Sprache : Wissensrepräsentation mit MultiNet (2008) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 2731) [ClassicSimilarity], result of:
              0.01984938 = score(doc=2731,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 2731, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2731)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Das Buch gibt eine umfassende Darstellung einer Methodik zur Interpretation und Bedeutungsrepräsentation natürlichsprachlicher Ausdrücke. Diese Methodik der "Mehrschichtigen Erweiterten Semantischen Netze", das sogenannte MultiNet-Paradigma, ist sowohl für theoretische Untersuchungen als auch für die automatische Verarbeitung natürlicher Sprache auf dem Rechner geeignet. Im ersten Teil des zweiteiligen Buches werden grundlegende Probleme der semantischen Repräsentation von Wissen bzw. der semantischen Interpretation natürlichsprachlicher Phänomene behandelt. Der zweite Teil enthält eine systematische Zusammenstellung des gesamten Repertoires von Darstellungsmitteln, die jeweils nach einem einheitlichen Schema beschrieben werden. Er dient als Kompendium der im Buch verwendeten formalen Beschreibungsmittel von MultiNet. Die vorgestellten Ergebnisse sind eingebettet in ein System von Software-Werkzeugen, die eine praktische Nutzung der MultiNet-Darstellungsmittel als Formalismus zur Bedeutungsrepräsentation im Rahmen der automatischen Sprachverarbeitung sichern. Hierzu gehören: eine Werkbank für den Wissensingenieur, ein Übersetzungssystem zur automatischen Gewinnung von Bedeutungsdarstellungen natürlichsprachlicher Sätze und eine Werkbank für den Computerlexikographen. Der Inhalt des Buches beruht auf jahrzehntelanger Forschung auf dem Gebiet der automatischen Sprachverarbeitung und wurde mit Vorlesungen zur Künstlichen Intelligenz und Wissensverarbeitung an der TU Dresden und der FernUniversität Hagen wiederholt in der Hochschullehre eingesetzt. Als Vorkenntnisse werden beim Leser lediglich Grundlagen der traditionellen Grammatik und elementare Kenntnisse der Prädikatenlogik vorausgesetzt.
  10. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 103) [ClassicSimilarity], result of:
              0.01984938 = score(doc=103,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 103, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=103)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.
  11. Vlachidis, A.; Binding, C.; Tudhope, D.; May, K.: Excavating grey literature : a case study on the rich indexing of archaeological documents via natural language-processing techniques and knowledge-based resources (2010) 0.00
    4.1850194E-4 = product of:
      0.0029295133 = sum of:
        0.0029295133 = product of:
          0.014647567 = sum of:
            0.014647567 = weight(_text_:retrieval in 3948) [ClassicSimilarity], result of:
              0.014647567 = score(doc=3948,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 3948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3948)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Purpose - This paper sets out to discuss the use of information extraction (IE), a natural language-processing (NLP) technique to assist "rich" semantic indexing of diverse archaeological text resources. The focus of the research is to direct a semantic-aware "rich" indexing of diverse natural language resources with properties capable of satisfying information retrieval from online publications and datasets associated with the Semantic Technologies for Archaeological Resources (STAR) project. Design/methodology/approach - The paper proposes use of the English Heritage extension (CRM-EH) of the standard core ontology in cultural heritage, CIDOC CRM, and exploitation of domain thesauri resources for driving and enhancing an Ontology-Oriented Information Extraction process. The process of semantic indexing is based on a rule-based Information Extraction technique, which is facilitated by the General Architecture of Text Engineering (GATE) toolkit and expressed by Java Annotation Pattern Engine (JAPE) rules. Findings - Initial results suggest that the combination of information extraction with knowledge resources and standard conceptual models is capable of supporting semantic-aware term indexing. Additional efforts are required for further exploitation of the technique and adoption of formal evaluation methods for assessing the performance of the method in measurable terms. Originality/value - The value of the paper lies in the semantic indexing of 535 unpublished online documents often referred to as "Grey Literature", from the Archaeological Data Service OASIS corpus (Online AccesS to the Index of archaeological investigationS), with respect to the CRM ontological concepts E49.Time Appellation and P19.Physical Object.