Search (8 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.006300525 = product of:
      0.028352361 = sum of:
        0.020384401 = product of:
          0.040768802 = sum of:
            0.040768802 = weight(_text_:seite in 4217) [ClassicSimilarity], result of:
              0.040768802 = score(doc=4217,freq=2.0), product of:
                0.16469958 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.02940506 = queryNorm
                0.24753433 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
        0.007967959 = product of:
          0.015935918 = sum of:
            0.015935918 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.015935918 = score(doc=4217,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Jetzt scheint es allmählich ans Eingemachte zu gehen. Ein von der chinesischen Alibaba-Gruppe entwickelte KI-Programm konnte erstmals Menschen in der Beantwortung von Fragen und dem Verständnis von Text schlagen. Die chinesische Regierung will das Land führend in der Entwicklung von Künstlicher Intelligenz machen und hat dafür eine nationale Strategie aufgestellt. Dazu ernannte das Ministerium für Wissenschaft und Technik die Internetkonzerne Baidu, Alibaba und Tencent sowie iFlyTek zum ersten nationalen Team für die Entwicklung der KI-Technik der nächsten Generation. Baidu ist zuständig für die Entwicklung autonomer Fahrzeuge, Alibaba für die Entwicklung von Clouds für "city brains" (Smart Cities sollen sich an ihre Einwohner und ihre Umgebung anpassen), Tencent für die Enwicklung von Computervision für medizinische Anwendungen und iFlyTec für "Stimmenintelligenz". Die vier Konzerne sollen offene Plattformen herstellen, die auch andere Firmen und Start-ups verwenden können. Überdies wird bei Peking für eine Milliarde US-Dollar ein Technologiepark für die Entwicklung von KI gebaut. Dabei geht es selbstverständlich nicht nur um zivile Anwendungen, sondern auch militärische. Noch gibt es in den USA mehr KI-Firmen, aber China liegt bereits an zweiter Stelle. Das Pentagon ist beunruhigt. Offenbar kommt China rasch vorwärts. Ende 2017 stellte die KI-Firma iFlyTek, die zunächst auf Stimmerkennung und digitale Assistenten spezialisiert war, einen Roboter vor, der den schriftlichen Test der nationalen Medizinprüfung erfolgreich bestanden hatte. Der Roboter war nicht nur mit immensem Wissen aus 53 medizinischen Lehrbüchern, 2 Millionen medizinischen Aufzeichnungen und 400.000 medizinischen Texten und Berichten gefüttert worden, er soll von Medizinexperten klinische Erfahrungen und Falldiagnosen übernommen haben. Eingesetzt werden soll er, in China herrscht vor allem auf dem Land, Ärztemangel, als Helfer, der mit der automatischen Auswertung von Patientendaten eine erste Diagnose erstellt und ansonsten Ärzten mit Vorschlägen zur Seite stehen.
    Date
    22. 1.2018 11:32:44
  2. Weßels, D.: ChatGPT - ein Meilenstein der KI-Entwicklung (2022) 0.00
    0.002880945 = product of:
      0.025928505 = sum of:
        0.025928505 = product of:
          0.05185701 = sum of:
            0.05185701 = weight(_text_:bewertung in 929) [ClassicSimilarity], result of:
              0.05185701 = score(doc=929,freq=2.0), product of:
                0.18575147 = queryWeight, product of:
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.02940506 = queryNorm
                0.27917415 = fieldWeight in 929, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.03125 = fieldNorm(doc=929)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Content
    "Seit dem 30. November 2022 ist meine Welt - und die vieler Bildungsexpertinnen und Bildungsexperten - gefühlt eine andere Welt, die uns in eine "Neuzeit" führt, von der wir noch nicht wissen, ob wir sie lieben oder fürchten sollen. Der Ableger und Prototyp ChatGPT des derzeit (zumindest in der westlichen Welt) führenden generativen KI-Sprachmodells GPT-3 von OpenAI wurde am 30. November veröffentlicht und ist seit dieser Zeit für jeden frei zugänglich und kostenlos. Was zunächst als unspektakuläre Ankündigung von OpenAI anmutete, nämlich das seit 2020 bereits verfügbare KI-Sprachmodell GPT-3 nun in leicht modifizierter Version (GPT-3,5) als Chat-Variante für die Echtzeit-Kommunikation bereitzustellen, entpuppt sich in der Anwendung - aus Sicht der Nutzerinnen und Nutzer - als Meilenstein der KI-Entwicklung. Fakt ist, dass die Leistungsvielfalt und -stärke von ChatGPT selbst IT-Expertinnen und -Experten überrascht hat und sie zu einer Fülle von Superlativen in der Bewertung veranlasst, jedoch immer in Kombination mit Hinweisen zur fehlenden Faktentreue und Verlässlichkeit derartiger generativer KI-Modelle. Mit WebGPT von OpenAI steht aber bereits ein Forschungsprototyp bereit, der mit integrierter Internetsuchfunktion die "Halluzinationen" aktueller GPT-Varianten ausmerzen könnte. Für den Bildungssektor stellt sich die Frage, wie sich das Lehren und Lernen an Hochschulen (und nicht nur dort) verändern wird, wenn derartige KI-Werkzeuge omnipräsent sind und mit ihrer Hilfe nicht nur die Hausarbeit "per Knopfdruck" erstellt werden kann. Beeindruckend ist zudem die fachliche Bandbreite von ChatGPT, siehe den Tweet von @davidtsong, der ChatGPT dem Studierfähigkeitstest SAT unterzogen hat."
  3. Räwel, J.: Automatisierte Kommunikation (2023) 0.00
    0.0028311666 = product of:
      0.0254805 = sum of:
        0.0254805 = product of:
          0.050961 = sum of:
            0.050961 = weight(_text_:seite in 909) [ClassicSimilarity], result of:
              0.050961 = score(doc=909,freq=2.0), product of:
                0.16469958 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3094179 = fieldWeight in 909, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=909)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    https://www.telepolis.de/features/Automatisierte-Kommunikation-7520683.html?seite=all
  4. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    0.0019223152 = product of:
      0.017300837 = sum of:
        0.017300837 = product of:
          0.034601673 = sum of:
            0.034601673 = weight(_text_:web in 2861) [ClassicSimilarity], result of:
              0.034601673 = score(doc=2861,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.36057037 = fieldWeight in 2861, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  5. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.00
    0.0017706576 = product of:
      0.015935918 = sum of:
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.031871837 = score(doc=835,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    29.12.2022 18:22:55
  6. Rieger, F.: Lügende Computer (2023) 0.00
    0.0017706576 = product of:
      0.015935918 = sum of:
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.031871837 = score(doc=912,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    16. 3.2023 19:22:55
  7. Perovsek, M.; Kranjca, J.; Erjaveca, T.; Cestnika, B.; Lavraca, N.: TextFlows : a visual programming platform for text mining and natural language processing (2016) 0.00
    0.0016311385 = product of:
      0.014680246 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 2697) [ClassicSimilarity], result of:
              0.029360492 = score(doc=2697,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 2697, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Text mining and natural language processing are fast growing areas of research, with numerous applications in business, science and creative industries. This paper presents TextFlows, a web-based text mining and natural language processing platform supporting workflow construction, sharing and execution. The platform enables visual construction of text mining workflows through a web browser, and the execution of the constructed workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the construction and sharing of text processing workflows, which can be reused in various applications. The paper presents the implemented text mining and language processing modules, and describes some precomposed workflows. Their features are demonstrated on three use cases: comparison of document classifiers and of different part-of-speech taggers on a text categorization problem, and outlier detection in document corpora.
  8. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 872) [ClassicSimilarity], result of:
              0.013840669 = score(doc=872,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 872, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.