Search (402 results, page 2 of 21)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  1. Rahmstorf, G.: Information retrieval using conceptual representations of phrases (1994) 0.02
    0.024245888 = product of:
      0.048491776 = sum of:
        0.027249675 = weight(_text_:information in 7862) [ClassicSimilarity], result of:
          0.027249675 = score(doc=7862,freq=14.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3078936 = fieldWeight in 7862, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=7862)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 7862) [ClassicSimilarity], result of:
              0.042484205 = score(doc=7862,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 7862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7862)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The information retrieval problem is described starting from an analysis of the concepts 'user's information request' and 'information offerings of texts'. It is shown that natural language phrases are a more adequate medium for expressing information requests and information offerings than character string based query and indexing languages complemented by Boolean oprators. The phrases must be represented as concepts to reach a language invariant level for rule based relevance analysis. The special type of representation called advanced thesaurus is used for the semantic representation of natural language phrases and for relevance processing. The analysis of the retrieval problem leads to a symmetric system structure
    Series
    Studies in classification, data analysis, and knowledge organization
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  2. Sidhom, S.; Hassoun, M.: Morpho-syntactic parsing for a text mining environment : An NP recognition model for knowledge visualization and information retrieval (2002) 0.02
    0.023939986 = product of:
      0.04787997 = sum of:
        0.017839102 = weight(_text_:information in 1852) [ClassicSimilarity], result of:
          0.017839102 = score(doc=1852,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 1852, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1852)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 1852) [ClassicSimilarity], result of:
              0.060081743 = score(doc=1852,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 1852, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Sidhom and Hassoun discuss the crucial role of NLP tools in Knowledge Extraction and Management as well as in the design of Information Retrieval Systems. The authors focus more specifically an the morpho-syntactic issues by describing their morpho-syntactic analysis platform, which has been implemented to cover the automatic indexing and information retrieval topics. To this end they implemented the Cascaded "Augmented Transition Network (ATN)". They used this formalism in order to analyse French text descriptions of Multimedia documents. An implementation of an ATN parsing automaton is briefly described. The Platform in its logical operation is considered as an investigative tool towards the knowledge organization (based an an NP recognition model) and management of multiform e-documents (text, multimedia, audio, image) using their text descriptions.
    Source
    Knowledge organization. 29(2002) nos.3/4, S.171-180
  3. Mustafa el Hadi, W.: Terminology & information retrieval : new tools for new needs. Integration of knowledge across boundaries (2003) 0.02
    0.023939986 = product of:
      0.04787997 = sum of:
        0.017839102 = weight(_text_:information in 2688) [ClassicSimilarity], result of:
          0.017839102 = score(doc=2688,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 2688, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2688)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2688) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2688,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2688, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2688)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The radical changes in information and communication techniques at the end of the 20th century have significantly modified the function of terminology and its applications in all forms of communication. The introduction of new mediums has deeply changed the possibilities of distribution of scientific information. What in this situation is the role of terminology and its practical applications? What is the place for multiple functions of terminology in the communication society? What is the impact of natural language (NLP) techniques used in its processing and management? In this article we will focus an the possibilities NLP techniques offer and how they can be directed towards the satisfaction of the newly expressed needs.
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  4. Lewis, D.D.; Sparck Jones, K.: Natural language processing for information retrieval (1997) 0.02
    0.023871778 = product of:
      0.047743555 = sum of:
        0.019420752 = weight(_text_:information in 575) [ClassicSimilarity], result of:
          0.019420752 = score(doc=575,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21943474 = fieldWeight in 575, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=575)
        0.028322803 = product of:
          0.056645606 = sum of:
            0.056645606 = weight(_text_:organization in 575) [ClassicSimilarity], result of:
              0.056645606 = score(doc=575,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.31513596 = fieldWeight in 575, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=575)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Imprint
    The Hague : International Federation for Information and Documentation (FID)
    Source
    From classification to 'knowledge organization': Dorking revisited or 'past is prelude'. A collection of reprints to commemorate the firty year span between the Dorking Conference (First International Study Conference on Classification Research 1957) and the Sixth International Study Conference on Classification Research (London 1997). Ed.: A. Gilchrist
  5. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.02
    0.023371622 = product of:
      0.046743244 = sum of:
        0.019420752 = weight(_text_:information in 7415) [ClassicSimilarity], result of:
          0.019420752 = score(doc=7415,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.21943474 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.054644987 = score(doc=7415,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
    Source
    Annual review of information science and technology. 31(1996), S.83-119
  6. Mustafa el Hadi, W.: Human language technology and its role in information access and management (2003) 0.02
    0.02242154 = product of:
      0.04484308 = sum of:
        0.027141329 = weight(_text_:information in 5524) [ClassicSimilarity], result of:
          0.027141329 = score(doc=5524,freq=20.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.30666938 = fieldWeight in 5524, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5524)
        0.017701752 = product of:
          0.035403505 = sum of:
            0.035403505 = weight(_text_:organization in 5524) [ClassicSimilarity], result of:
              0.035403505 = score(doc=5524,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19695997 = fieldWeight in 5524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5524)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The role of linguistics in information access, extraction and dissemination is essential. Radical changes in the techniques of information and communication at the end of the twentieth century have had a significant effect on the function of the linguistic paradigm and its applications in all forms of communication. The introduction of new technical means have deeply changed the possibilities for the distribution of information. In this situation, what is the role of the linguistic paradigm and its practical applications, i.e., natural language processing (NLP) techniques when applied to information access? What solutions can linguistics offer in human computer interaction, extraction and management? Many fields show the relevance of the linguistic paradigm through the various technologies that require NLP, such as document and message understanding, information detection, extraction, and retrieval, question and answer, cross-language information retrieval (CLIR), text summarization, filtering, and spoken document retrieval. This paper focuses on the central role of human language technologies in the information society, surveys the current situation, describes the benefits of the above mentioned applications, outlines successes and challenges, and discusses solutions. It reviews the resources and means needed to advance information access and dissemination across language boundaries in the twenty-first century. Multilingualism, which is a natural result of globalization, requires more effort in the direction of language technology. The scope of human language technology (HLT) is large, so we limit our review to applications that involve multilinguality.
    Content
    Beitrag eines Themenheftes "Knowledge organization and classification in international information retrieval"
  7. Anguiano Peña, G.; Naumis Peña, C.: Method for selecting specialized terms from a general language corpus (2015) 0.02
    0.022303218 = product of:
      0.044606436 = sum of:
        0.014565565 = weight(_text_:information in 2196) [ClassicSimilarity], result of:
          0.014565565 = score(doc=2196,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 2196, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2196)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2196) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2196,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2196, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2196)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Among the many aspects studied by library and information science are linguistic phenomena associated with document content analysis, for purposes of both information organization and retrieval. To this end, terms used in scientific and technical language must be recovered and their area of domain and behavior studied. Through language, society controls the knowledge available to people. Document content analysis, in this case of scientific texts, facilitates gathering knowledge of lexical units and their major applications and separating such specialized terms from the general language, to create indexing languages. The model presented here or other lexicographic resources with similar characteristics may be useful in the near future, in computer-assisted indexing or as corpora monitors, with respect to new text analyses or specialized corpora. Thus, using techniques for document content analysis of a lexicographically labeled general language corpus proposed herein, components which enable the extraction of lexical units from specialized language may be obtained and characterized.
    Source
    Knowledge organization. 42(2015) no.3, S.164-175
  8. Rosemblat, G.; Tse, T.; Gemoets, D.: Adapting a monolingual consumer health system for Spanish cross-language information retrieval (2004) 0.02
    0.02109987 = product of:
      0.04219974 = sum of:
        0.017165681 = weight(_text_:information in 2673) [ClassicSimilarity], result of:
          0.017165681 = score(doc=2673,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 2673, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2673)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 2673) [ClassicSimilarity], result of:
              0.050068118 = score(doc=2673,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 2673, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2673)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This preliminary study applies a bilingual term list (BTL) approach to cross-language information retrieval (CLIR) in the consumer health domain and compares it to a machine translation (MT) approach. We compiled a Spanish-English BTL of 34,980 medical and general terms. We collected a training set of 466 general health queries from MedlinePlus en espaiiol and 488 domainspecific queries from ClinicalTrials.gov translated into Spanish. We submitted the training set queries in English against a test bed of 7,170 ClinicalTrials.gov English documents, and compared MT and BTL against this English monolingual standard. The BTL approach was less effective (F = 0.420) than the MT approach (F = 0.578). A failure analysis of the results led to substitution of BTL dictionary sources and the addition of rudimentary normalisation of plural forms. These changes improved the CLIR effectiveness of the same training set queries (F = 0.474), and yielded comparable results for a test set of new 954 queries (F= 0.484). These results will shape our efforts to support Spanishspeakers' needs for consumer health information currently only available in English.
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  9. Anizi, M.; Dichy, J.: Improving information retrieval in Arabic through a multi-agent approach and a rich lexical resource (2011) 0.02
    0.02109987 = product of:
      0.04219974 = sum of:
        0.017165681 = weight(_text_:information in 4738) [ClassicSimilarity], result of:
          0.017165681 = score(doc=4738,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 4738, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4738)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 4738) [ClassicSimilarity], result of:
              0.050068118 = score(doc=4738,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 4738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4738)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper addresses the optimization of information retrieval in Arabic. The results derived from the expanding development of sites in Arabic are often spectacular. Nevertheless, several observations indicate that the responses remain disappointing, particularly upon comparing users' requests and quality of responses. One of the problems encountered by users is the loss of time when navigating between different URLs to find adequate responses. This, in many cases, is due to the absence of forms morphologically related to the research keyword. Such problems can be approached through a morphological analyzer drawing on the DIINAR.1 morpho-lexical resource. A second problem concerns the formulation of the query, which may prove ambiguous, as in everyday language. We then focus on contextual disambiguation based on a rich lexical resource that includes collocations and set expressions. The overall scheme of such a resource will only be hinted at here. Our approach leads to the elaboration of a multi-agent system, motivated by a need to solve problems encountered when using conventional methods of analysis, and to improve the results of queries thanks to a better collaboration between different levels of analysis. We suggest resorting to four agents: morphological, morpho-lexical, contextualization, and an interface agent. These agents 'negotiate' and 'cooperate' throughout the analysis process, starting from the submission of the initial query, and going on until an adequate query is obtained.
    Content
    Beitrag innerhalb einer Special Section: Knowledge Organization, Competitive Intelligence, and Information Systems - Papers from 4th International Conference on "Information Systems & Economic Intelligence," February 17-19th, 2011. Marrakech - Morocco.
    Source
    Knowledge organization. 38(2011) no.5, S.405-413
  10. Fóris, A.: Network theory and terminology (2013) 0.02
    0.02105531 = product of:
      0.08422124 = sum of:
        0.08422124 = sum of:
          0.050068118 = weight(_text_:organization in 1365) [ClassicSimilarity], result of:
            0.050068118 = score(doc=1365,freq=4.0), product of:
              0.17974974 = queryWeight, product of:
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.050415643 = queryNorm
              0.27854347 = fieldWeight in 1365, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5653565 = idf(docFreq=3399, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1365)
          0.03415312 = weight(_text_:22 in 1365) [ClassicSimilarity], result of:
            0.03415312 = score(doc=1365,freq=2.0), product of:
              0.17654699 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050415643 = queryNorm
              0.19345059 = fieldWeight in 1365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1365)
      0.25 = coord(1/4)
    
    Content
    Beitrag im Rahmen eines Special Issue: 'Paradigms of Knowledge and its Organization: The Tree, the Net and Beyond,' edited by Fulvio Mazzocchi and Gian Carlo Fedeli. - Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_40_2013_6_i.pdf.
    Date
    2. 9.2014 21:22:48
    Source
    Knowledge organization. 40(2013) no.6, S.424-429
  11. Morris, V.: Automated language identification of bibliographic resources (2020) 0.02
    0.02052752 = product of:
      0.04105504 = sum of:
        0.013732546 = weight(_text_:information in 5749) [ClassicSimilarity], result of:
          0.013732546 = score(doc=5749,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1551638 = fieldWeight in 5749, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=5749)
        0.027322493 = product of:
          0.054644987 = sum of:
            0.054644987 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.054644987 = score(doc=5749,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
    Date
    2. 3.2020 19:04:22
  12. Mustafa el Hadi, W.: Automatic term recognition & extraction tools : examining the new interfaces and their effective communication role in LSP discourse (1998) 0.02
    0.020170141 = product of:
      0.040340282 = sum of:
        0.01029941 = weight(_text_:information in 67) [ClassicSimilarity], result of:
          0.01029941 = score(doc=67,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 67, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=67)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 67) [ClassicSimilarity], result of:
              0.060081743 = score(doc=67,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 67, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=67)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this paper we will discuss the possibility of reorienting NLP (Natural Language Processing) systems towards the extraction, not only of terms and their semantic relations, but also towards a variety of other uses; the storage, accessing and retrieving of Language for Special Purposes (LSPZ-20) lexical combinations, the provision of contexts and other information on terms through the integration of more interfaces to terminological data-bases, term managing systems and existing NLP systems. The aim of making such interfaces available is to increase the efficiency of the systems and improve the terminology-oriented text analysis. Since automatic term extraction is the backbone of many applications such as machine translation (MT), indexing, technical writing, thesaurus construction and knowledge representation developments in this area will have asignificant impact
    Series
    Advances in knowledge organization; vol.6
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  13. Martínez, F.; Martín, M.T.; Rivas, V.M.; Díaz, M.C.; Ureña, L.A.: Using neural networks for multiword recognition in IR (2003) 0.02
    0.020170141 = product of:
      0.040340282 = sum of:
        0.01029941 = weight(_text_:information in 2777) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2777,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2777, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2777)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2777) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2777,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2777, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2777)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this paper, a supervised neural network has been used to classify pairs of terms as being multiwords or non-multiwords. Classification is based an the values yielded by different estimators, currently available in literature, used as inputs for the neural network. Lists of multiwords and non-multiwords have been built to train the net. Afterward, many other pairs of terms have been classified using the trained net. Results obtained in this classification have been used to perform information retrieval tasks. Experiments show that detecting multiwords results in better performance of the IR methods.
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  14. Peis, E.; Herrera-Viedma, E.; Herrera, J.C.: On the evaluation of XML documents using Fuzzy linguistic techniques (2003) 0.02
    0.020170141 = product of:
      0.040340282 = sum of:
        0.01029941 = weight(_text_:information in 2778) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2778,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2778, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2778)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2778) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2778,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2778, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2778)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Recommender systems evaluate and filter the great amount of information available an the Web to assist people in their search processes. A fuzzy evaluation method of XML documents based an computing with words is presented. Given an XML document type (e.g. scientific article), we consider that its elements are not equally informative. This is indicated by the use of a DTD and defining linguistic importance attributes to the more meaningful elements of the DTD designed. Then, the evaluation method generates linguistic recommendations from linguistic evaluation judgements provided by different recommenders an meaningful elements of DTD.
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  15. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.02
    0.02001835 = product of:
      0.0800734 = sum of:
        0.0800734 = product of:
          0.2402202 = sum of:
            0.2402202 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.2402202 = score(doc=862,freq=2.0), product of:
                0.42742437 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050415643 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  16. Jones, I.; Cunliffe, D.; Tudhope, D.: Natural language processing and knowledge organization systems as an aid to retrieval (2004) 0.02
    0.019861802 = product of:
      0.039723605 = sum of:
        0.012015978 = weight(_text_:information in 2677) [ClassicSimilarity], result of:
          0.012015978 = score(doc=2677,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 2677, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2677)
        0.027707627 = product of:
          0.055415254 = sum of:
            0.055415254 = weight(_text_:organization in 2677) [ClassicSimilarity], result of:
              0.055415254 = score(doc=2677,freq=10.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.30829114 = fieldWeight in 2677, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2677)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper discusses research that employs methods from Natural Language Processing (NLP) in exploiting the intellectual resources of Knowledge Organization Systems (KOS), particularly in the retrieval of information. A technique for the disambiguation of homographs and nominal compounds in free text, where these are known ambiguous terms in the KOS itself, is described. The use of Roget's Thesaurus as an intermediary in the process is also reported. A short review of the relevant literature in the field is given. Design considerations, results and conclusions are presented from the implementation of a prototype system. The linguistic techniques are applied at two complementary levels, namely an a free text string used as an entry point to the KOS, and an the underlying controlled vocabulary itself.
    Content
    1. Introduction The need for research into the application of linguistic techniques in Information Retrieval (IR) in general, and a similar need in faceted Knowledge Organization Systems (KOS) has been indicated by various authors. Smeaton (1997) points out the inherent limitations of conventional approaches to IR based an "bags of words", mainly difficulties caused by lexical ambiguity in the words concerned, and goes an to suggest the possibility of using Natural Language Processing (NLP) in query formulation. Past experience with a faceted retrieval system highlighted the need for integrating the linguistic perspective in order to fully utilise the potential of a KOS (Tudhope et al." 2002). The present research seeks to address some of these needs in using NLP to improve the efficacy of KOS tools in query and retrieval systems. Syntactic parsing and part-of-speech tagging can substantially reduce lexical ambiguity through homograph disambiguation. Given the two strings "1 fable the motion" and "I put the motion an the fable", for instance, the parser used in this research clearly indicates that 'fable' in the first string is a verb, while 'table' in the second string is a noun, a distinction that would be missed in the "bag of words" approach. This syntactic disambiguation enables a more precise matching from free text to the controlled vocabulary of a KOS and vice versa. The use of a general linguistic resource, namely Roget's Thesaurus of English Words and Phrases (RTEWP), as an intermediary in this process, is investigated. The adaptation of the Link parser (Sleator & Temperley, 1993) to the purposes of the research is reported. The design and implementation of the early practical stages of the project are described, and the results of the initial experiments are presented and evaluated. Applications of the techniques developed are foreseen in the areas of query disambiguation, information retrieval and automatic indexing. In the first section of the paper a brief review of the literature and relevant current work in the field is presented. The second section includes reports an the development of algorithms, the construction of data sets and theoretical and experimental work undertaken to date. The third section evaluates the results obtained, and outlines directions for future research.
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  17. Collovini de Abreu, S.; Vieira, R.: RelP: Portuguese open relation extraction (2017) 0.02
    0.019621588 = product of:
      0.039243177 = sum of:
        0.008582841 = weight(_text_:information in 3621) [ClassicSimilarity], result of:
          0.008582841 = score(doc=3621,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 3621, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3621)
        0.030660335 = product of:
          0.06132067 = sum of:
            0.06132067 = weight(_text_:organization in 3621) [ClassicSimilarity], result of:
              0.06132067 = score(doc=3621,freq=6.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.34114468 = fieldWeight in 3621, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3621)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Natural language texts are valuable data sources in many human activities. NLP techniques are being widely used in order to help find the right information to specific needs. In this paper, we present one such technique: relation extraction from texts. This task aims at identifying and classifying semantic relations that occur between entities in a text. For example, the sentence "Roberto Marinho is the founder of Rede Globo" expresses a relation occurring between "Roberto Marinho" and "Rede Globo." This work presents a system for Portuguese Open Relation Extraction, named RelP, which extracts any relation descriptor that describes an explicit relation between named entities in the organisation domain by applying the Conditional Random Fields. For implementing RelP, we define the representation scheme, features based on previous work, and a reference corpus. RelP achieved state of the art results for open relation extraction; the F-measure rate was around 60% between the named entities person, organisation and place. For better understanding of the output, we present a way for organizing the output from the mining of the extracted relation descriptors. This organization can be useful to classify relation types, to cluster the entities involved in a common relation and to populate datasets.
    Content
    Beitrag in einem Special Issue "New Trends for Knowledge Organization, Guest Editor: Renato Rocha Souza".
    Source
    Knowledge organization. 44(2017) no.3, S.163-177
  18. Ingenerf, J.: Disambiguating lexical meaning : conceptual meta-modelling as a means of controlling semantic language analysis (1994) 0.02
    0.019540602 = product of:
      0.039081205 = sum of:
        0.017839102 = weight(_text_:information in 2572) [ClassicSimilarity], result of:
          0.017839102 = score(doc=2572,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 2572, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2572)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 2572) [ClassicSimilarity], result of:
              0.042484205 = score(doc=2572,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 2572, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2572)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A formal terminology consists of a set of conceptual definitions for the semantical reconstruction of a vocabulary on an intensional level of description. The marking of comparatively abstract concepts as semantic categories and their relational positioning on a meta-level is shown to be instrumental in adapting the conceptual design to domain-specific characteristics. Such a meta-model implies that concepts subsumed by categories may share their compositional possibilities as regards the construction of complex structures. Our approach to language processing leads to an automatic derivation of contextual semantic information about the linguistic expressions under review. This information is encoded by means of values of certain attributes defined in a feature-based grammatical framework. A standard process controlling grammatical analysis, the unification of feature structures, is used for its evaluation. One important example for the usefulness of this approach is the disamgiguation of lexical meaning
    Series
    Studies in classification, data analysis, and knowledge organization
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  19. Bian, G.-W.; Chen, H.-H.: Cross-language information access to multilingual collections on the Internet (2000) 0.02
    0.019165486 = product of:
      0.038330972 = sum of:
        0.017839102 = weight(_text_:information in 4436) [ClassicSimilarity], result of:
          0.017839102 = score(doc=4436,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 4436, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4436)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 4436) [ClassicSimilarity], result of:
              0.04098374 = score(doc=4436,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 4436, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4436)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Language barrier is the major problem that people face in searching for, retrieving, and understanding multilingual collections on the Internet. This paper deals with query translation and document translation in a Chinese-English information retrieval system called MTIR. Bilingual dictionary and monolingual corpus-based approaches are adopted to select suitable tranlated query terms. A machine transliteration algorithm is introduced to resolve proper name searching. We consider several design issues for document translation, including which material is translated, what roles the HTML tags play in translation, what the tradeoff is between the speed performance and the translation performance, and what from the translated result is presented in. About 100.000 Web pages translated in the last 4 months of 1997 are used for quantitative study of online and real-time Web page translation
    Date
    16. 2.2000 14:22:39
    Source
    Journal of the American Society for Information Science. 51(2000) no.3, S.281-296
  20. Chen, K.-H.: Evaluating Chinese text retrieval with multilingual queries (2002) 0.02
    0.018399216 = product of:
      0.036798432 = sum of:
        0.012015978 = weight(_text_:information in 1851) [ClassicSimilarity], result of:
          0.012015978 = score(doc=1851,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 1851, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1851)
        0.024782453 = product of:
          0.049564905 = sum of:
            0.049564905 = weight(_text_:organization in 1851) [ClassicSimilarity], result of:
              0.049564905 = score(doc=1851,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27574396 = fieldWeight in 1851, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1851)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper reports the design of a Chinese test collection with multilingual queries and the application of this test collection to evaluate information retrieval Systems. The effective indexing units, IR models, translation techniques, and query expansion for Chinese text retrieval are identified. The collaboration of East Asian countries for construction of test collections for cross-language multilingual text retrieval is also discussed in this paper. As well, a tool is designed to help assessors judge relevante and gather the events of relevante judgment. The log file created by this tool will be used to analyze the behaviors of assessors in the future.
    Source
    Knowledge organization. 29(2002) nos.3/4, S.156-170

Languages

Types