Search (11 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"el"
  • × year_i:[2020 TO 2030}
  1. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.01
    0.01441637 = product of:
      0.05766548 = sum of:
        0.05190416 = weight(_text_:wide in 851) [ClassicSimilarity], result of:
          0.05190416 = score(doc=851,freq=4.0), product of:
            0.18743214 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042302497 = queryNorm
            0.2769224 = fieldWeight in 851, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=851)
        0.005761317 = weight(_text_:information in 851) [ClassicSimilarity], result of:
          0.005761317 = score(doc=851,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.0775819 = fieldWeight in 851, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=851)
      0.25 = coord(2/8)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  2. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.012525181 = product of:
      0.050100725 = sum of:
        0.02016461 = weight(_text_:information in 667) [ClassicSimilarity], result of:
          0.02016461 = score(doc=667,freq=8.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.27153665 = fieldWeight in 667, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=667)
        0.029936114 = product of:
          0.05987223 = sum of:
            0.05987223 = weight(_text_:retrieval in 667) [ClassicSimilarity], result of:
              0.05987223 = score(doc=667,freq=8.0), product of:
                0.12796146 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.042302497 = queryNorm
                0.46789268 = fieldWeight in 667, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
    Series
    ¬The Information retrieval series, vol 43
    Source
    Evaluating information retrieval and access tasks. Eds.: Sakai, T., Oard, D., Kando, N. [https://doi.org/10.1007/978-981-15-5554-1_12]
  3. Metz, C.: ¬The new chatbots could change the world : can you trust them? (2022) 0.01
    0.010357493 = product of:
      0.08285994 = sum of:
        0.08285994 = weight(_text_:world in 854) [ClassicSimilarity], result of:
          0.08285994 = score(doc=854,freq=2.0), product of:
            0.16259687 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.042302497 = queryNorm
            0.50960356 = fieldWeight in 854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.09375 = fieldNorm(doc=854)
      0.125 = coord(1/8)
    
  4. Huge "foundation models" are turbo-charging AI progress : The world that Bert built (2022) 0.01
    0.010357493 = product of:
      0.08285994 = sum of:
        0.08285994 = weight(_text_:world in 922) [ClassicSimilarity], result of:
          0.08285994 = score(doc=922,freq=2.0), product of:
            0.16259687 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.042302497 = queryNorm
            0.50960356 = fieldWeight in 922, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.09375 = fieldNorm(doc=922)
      0.125 = coord(1/8)
    
  5. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.01
    0.0052324138 = product of:
      0.04185931 = sum of:
        0.04185931 = weight(_text_:world in 923) [ClassicSimilarity], result of:
          0.04185931 = score(doc=923,freq=6.0), product of:
            0.16259687 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.042302497 = queryNorm
            0.2574423 = fieldWeight in 923, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.02734375 = fieldNorm(doc=923)
      0.125 = coord(1/8)
    
    Abstract
    They might appear intelligent, but LLMs are nothing of the sort. They don't understand the meanings of the words they are using, nor the concepts expressed within the sentences they create. When asked how to bring a cow back to life, earlier versions of ChatGPT, for example, which ran on a souped-up version of GPT-3, would confidently provide a list of instructions. So-called hallucinations like this happen because language models have no concept of what a "cow" is or that "death" is a non-reversible state of being. LLMs do not have minds that can think about objects in the world and how they relate to each other. All they "know" is how likely it is that some sets of words will follow other sets of words, having calculated those probabilities from their training data. To make sense of all this, I spoke with Gary Marcus, an emeritus professor of psychology and neural science at New York University, for "Babbage", our science and technology podcast. Last year, as the world was transfixed by the sudden appearance of ChatGPT, he made some fascinating predictions about GPT-4.
    People use symbols to think about the world: if I say the words "cat", "house" or "aeroplane", you know instantly what I mean. Symbols can also be used to describe the way things are behaving (running, falling, flying) or they can represent how things should behave in relation to each other (a "+" means add the numbers before and after). Symbolic AI is a way to embed this human knowledge and reasoning into computer systems. Though the idea has been around for decades, it fell by the wayside a few years ago as deep learning-buoyed by the sudden easy availability of lots of training data and cheap computing power-became more fashionable. In the near future at least, there's no doubt people will find LLMs useful. But whether they represent a critical step on the path towards AGI, or rather just an intriguing detour, remains to be seen."
  6. Zhai, X.: ChatGPT user experience: : implications for education (2022) 0.00
    0.004315622 = product of:
      0.034524977 = sum of:
        0.034524977 = weight(_text_:world in 849) [ClassicSimilarity], result of:
          0.034524977 = score(doc=849,freq=2.0), product of:
            0.16259687 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.042302497 = queryNorm
            0.21233483 = fieldWeight in 849, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.0390625 = fieldNorm(doc=849)
      0.125 = coord(1/8)
    
    Abstract
    ChatGPT, a general-purpose conversation chatbot released on November 30, 2022, by OpenAI, is expected to impact every aspect of society. However, the potential impacts of this NLP tool on education remain unknown. Such impact can be enormous as the capacity of ChatGPT may drive changes to educational learning goals, learning activities, and assessment and evaluation practices. This study was conducted by piloting ChatGPT to write an academic paper, titled Artificial Intelligence for Education (see Appendix A). The piloting result suggests that ChatGPT is able to help researchers write a paper that is coherent, (partially) accurate, informative, and systematic. The writing is extremely efficient (2-3 hours) and involves very limited professional knowledge from the author. Drawing upon the user experience, I reflect on the potential impacts of ChatGPT, as well as similar AI tools, on education. The paper concludes by suggesting adjusting learning goals-students should be able to use AI tools to conduct subject-domain tasks and education should focus on improving students' creativity and critical thinking rather than general skills. To accomplish the learning goals, researchers should design AI-involved learning tasks to engage students in solving real-world problems. ChatGPT also raises concerns that students may outsource assessment tasks. This paper concludes that new formats of assessments are needed to focus on creativity and critical thinking that AI cannot substitute.
  7. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.00
    0.0028657021 = product of:
      0.022925617 = sum of:
        0.022925617 = product of:
          0.045851234 = sum of:
            0.045851234 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.045851234 = score(doc=835,freq=2.0), product of:
                0.14813614 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042302497 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    29.12.2022 18:22:55
  8. Rieger, F.: Lügende Computer (2023) 0.00
    0.0028657021 = product of:
      0.022925617 = sum of:
        0.022925617 = product of:
          0.045851234 = sum of:
            0.045851234 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.045851234 = score(doc=912,freq=2.0), product of:
                0.14813614 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042302497 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    16. 3.2023 19:22:55
  9. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.00
    0.0024889205 = product of:
      0.019911364 = sum of:
        0.019911364 = weight(_text_:web in 872) [ClassicSimilarity], result of:
          0.019911364 = score(doc=872,freq=2.0), product of:
            0.13805464 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042302497 = queryNorm
            0.14422815 = fieldWeight in 872, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=872)
      0.125 = coord(1/8)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
  10. Weiß, E.-M.: ChatGPT soll es richten : Microsoft baut KI in Suchmaschine Bing ein (2023) 0.00
    0.0012602882 = product of:
      0.010082305 = sum of:
        0.010082305 = weight(_text_:information in 866) [ClassicSimilarity], result of:
          0.010082305 = score(doc=866,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.13576832 = fieldWeight in 866, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=866)
      0.125 = coord(1/8)
    
    Abstract
    ChatGPT, die künstliche Intelligenz der Stunde, ist von OpenAI entwickelt worden. Und OpenAI ist in der Vergangenheit nicht unerheblich von Microsoft unterstützt worden. Nun geht es ums Profitieren: Die KI soll in die Suchmaschine Bing eingebaut werden, was eine direkte Konkurrenz zu Googles Suchalgorithmen und Intelligenzen bedeutet. Bing war da bislang nicht sonderlich erfolgreich. Wie "The Information" mit Verweis auf zwei Insider berichtet, plant Microsoft, ChatGPT in seine Suchmaschine Bing einzubauen. Bereits im März könnte die neue, intelligente Suche verfügbar sein. Microsoft hatte zuvor auf der hauseigenen Messe Ignite zunächst die Integration des Bildgenerators DALL·E 2 in seine Suchmaschine angekündigt - ohne konkretes Startdatum jedoch. Fragt man ChatGPT selbst, bestätigt der Chatbot seine künftige Aufgabe noch nicht. Weiß aber um potentielle Vorteile.
  11. Giesselbach, S.; Estler-Ziegler, T.: Dokumente schneller analysieren mit Künstlicher Intelligenz (2021) 0.00
    9.0020575E-4 = product of:
      0.007201646 = sum of:
        0.007201646 = weight(_text_:information in 128) [ClassicSimilarity], result of:
          0.007201646 = score(doc=128,freq=2.0), product of:
            0.0742611 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.042302497 = queryNorm
            0.09697737 = fieldWeight in 128, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=128)
      0.125 = coord(1/8)
    
    Footnote
    Vortrag im Rahmen des Berliner Arbeitskreis Information (BAK) am 25.02.2021.