Search (35 results, page 2 of 2)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"el"
  1. Weiß, E.-M.: ChatGPT soll es richten : Microsoft baut KI in Suchmaschine Bing ein (2023) 0.00
    0.0042062383 = product of:
      0.031546786 = sum of:
        0.014994173 = weight(_text_:und in 866) [ClassicSimilarity], result of:
          0.014994173 = score(doc=866,freq=4.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.24241515 = fieldWeight in 866, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=866)
        0.016552612 = weight(_text_:des in 866) [ClassicSimilarity], result of:
          0.016552612 = score(doc=866,freq=2.0), product of:
            0.077284485 = queryWeight, product of:
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.027907511 = queryNorm
            0.2141777 = fieldWeight in 866, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.0546875 = fieldNorm(doc=866)
      0.13333334 = coord(2/15)
    
    Abstract
    ChatGPT, die künstliche Intelligenz der Stunde, ist von OpenAI entwickelt worden. Und OpenAI ist in der Vergangenheit nicht unerheblich von Microsoft unterstützt worden. Nun geht es ums Profitieren: Die KI soll in die Suchmaschine Bing eingebaut werden, was eine direkte Konkurrenz zu Googles Suchalgorithmen und Intelligenzen bedeutet. Bing war da bislang nicht sonderlich erfolgreich. Wie "The Information" mit Verweis auf zwei Insider berichtet, plant Microsoft, ChatGPT in seine Suchmaschine Bing einzubauen. Bereits im März könnte die neue, intelligente Suche verfügbar sein. Microsoft hatte zuvor auf der hauseigenen Messe Ignite zunächst die Integration des Bildgenerators DALL·E 2 in seine Suchmaschine angekündigt - ohne konkretes Startdatum jedoch. Fragt man ChatGPT selbst, bestätigt der Chatbot seine künftige Aufgabe noch nicht. Weiß aber um potentielle Vorteile.
  2. Kurz, C.: Womit sich Strafverfolger bald befassen müssen : ChatGPT (2023) 0.00
    0.0041379198 = product of:
      0.031034395 = sum of:
        0.012117122 = weight(_text_:und in 203) [ClassicSimilarity], result of:
          0.012117122 = score(doc=203,freq=2.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.19590102 = fieldWeight in 203, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=203)
        0.018917272 = weight(_text_:des in 203) [ClassicSimilarity], result of:
          0.018917272 = score(doc=203,freq=2.0), product of:
            0.077284485 = queryWeight, product of:
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.027907511 = queryNorm
            0.24477452 = fieldWeight in 203, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.0625 = fieldNorm(doc=203)
      0.13333334 = coord(2/15)
    
    Abstract
    Ein Europol-Bericht widmet sich den Folgen von ChatGPT, wenn Kriminelle die Fähigkeiten des Chatbots für sich ausnutzen: Es drohe vermehrt Phishing und noch mehr Desinformation. Ein Problem für die Strafverfolgung könne auch automatisiert erzeugter bösartiger Quellcode sein.
  3. Sprachtechnologie : ein Überblick (2012) 0.00
    0.0040498367 = product of:
      0.030373774 = sum of:
        0.018550478 = weight(_text_:und in 1750) [ClassicSimilarity], result of:
          0.018550478 = score(doc=1750,freq=12.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.29991096 = fieldWeight in 1750, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1750)
        0.011823296 = weight(_text_:des in 1750) [ClassicSimilarity], result of:
          0.011823296 = score(doc=1750,freq=2.0), product of:
            0.077284485 = queryWeight, product of:
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.027907511 = queryNorm
            0.15298408 = fieldWeight in 1750, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1750)
      0.13333334 = coord(2/15)
    
    Abstract
    Seit mehr als einem halben Jahrhundert existieren ernsthafte und ernst zu nehmende Versuche, menschliche Sprache maschinell zu verarbeiten. Maschinelle Übersetzung oder "natürliche" Dialoge mit Computern gehören zu den ersten Ideen, die den Bereich der späteren Computerlinguistik oder Sprachtechnologie abgesteckt und deren Vorhaben geleitet haben. Heute ist dieser auch maschinelle Sprachverarbeitung (natural language processing, NLP) genannte Bereich stark ausdiversifiziert: Durch die rapide Entwicklung der Informatik ist vieles vorher Unvorstellbare Realität (z. B. automatische Telefonauskunft), einiges früher Unmögliche immerhin möglich geworden (z. B. Handhelds mit Sprachein- und -ausgabe als digitale persönliche (Informations-)Assistenten). Es gibt verschiedene Anwendungen der Computerlinguistik, von denen einige den Sprung in die kommerzielle Nutzung geschafft haben (z. B. Diktiersysteme, Textklassifikation, maschinelle Übersetzung). Immer noch wird an natürlichsprachlichen Systemen (natural language systems, NLS) verschiedenster Funktionalität (z. B. zur Beantwortung beliebiger Fragen oder zur Generierung komplexer Texte) intensiv geforscht, auch wenn die hoch gesteckten Ziele von einst längst nicht erreicht sind (und deshalb entsprechend "heruntergefahren" wurden). Wo die maschinelle Sprachverarbeitung heute steht, ist allerdings angesichts der vielfältigen Aktivitäten in der Computerlinguistik und Sprachtechnologie weder offensichtlich noch leicht in Erfahrung zu bringen (für Studierende des Fachs und erst recht für Laien). Ein Ziel dieses Buches ist, es, die aktuelle Literaturlage in dieser Hinsicht zu verbessern, indem spezifisch systembezogene Aspekte der Computerlinguistik als Überblick über die Sprachtechnologie zusammengetragen werden.
  4. RWI/PH: Auf der Suche nach dem entscheidenden Wort : die Häufung bestimmter Wörter innerhalb eines Textes macht diese zu Schlüsselwörtern (2012) 0.00
    0.0038076125 = product of:
      0.028557092 = sum of:
        0.0143691385 = weight(_text_:und in 331) [ClassicSimilarity], result of:
          0.0143691385 = score(doc=331,freq=20.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.23231003 = fieldWeight in 331, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0234375 = fieldNorm(doc=331)
        0.014187954 = weight(_text_:des in 331) [ClassicSimilarity], result of:
          0.014187954 = score(doc=331,freq=8.0), product of:
            0.077284485 = queryWeight, product of:
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.027907511 = queryNorm
            0.18358089 = fieldWeight in 331, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.7693076 = idf(docFreq=7536, maxDocs=44218)
              0.0234375 = fieldNorm(doc=331)
      0.13333334 = coord(2/15)
    
    Abstract
    Der Mensch kann komplexe Sachverhalte in eine eindimensionale Abfolge von Buchstaben umwandeln und niederschreiben. Dabei dienen Schlüsselwörter dazu, den Inhalt des Textes zu vermitteln. Wie Buchstaben und Wörtern mit dem Thema eines Textes zusammenhängen, haben Eduardo Altmann und seine Kollegen vom Max-Planck-Institut für die Physik komplexer Systeme und der Universität Bologna mit Hilfe von statistischen Methoden untersucht. Dabei haben sie herausgefunden, dass Schlüsselwörter nicht dadurch gekennzeichnet sind, dass sie im ganzen Text besonders häufig vorkommen, sondern nur an bestimmten Stellen vermehrt zu finden sind. Außerdem gibt es Beziehungen zwischen weit entfernten Textabschnitten, in der Form, dass dieselben Wörter und Buchstaben bevorzugt verwendet werden.
    Content
    "Die Dresdner Wissenschaftler haben die semantischen Eigenschaften von Texten mathematisch untersucht, indem sie zehn verschiedene englische Texte in unterschiedlichen Formen kodierten. Dazu zählt unter anderem die englische Ausgabe von Leo Tolstois "Krieg und Frieden". Beispielsweise übersetzten die Forscher Buchstaben innerhalb eines Textes in eine Binär-Sequenz. Dazu ersetzten sie alle Vokale durch eine Eins und alle Konsonanten durch eine Null. Mit Hilfe weiterer mathematischer Funktionen beleuchteten die Wissenschaftler dabei verschiedene Ebenen des Textes, also sowohl einzelne Vokale, Buchstaben als auch ganze Wörter, die in verschiedenen Formen kodiert wurden. Innerhalb des ganzen Textes lassen sich so wiederkehrende Muster finden. Diesen Zusammenhang innerhalb des Textes bezeichnet man als Langzeitkorrelation. Diese gibt an, ob zwei Buchstaben an beliebig weit voneinander entfernten Textstellen miteinander in Verbindung stehen - beispielsweise gibt es wenn wir an einer Stelle einen Buchstaben "K" finden, eine messbare höhere Wahrscheinlichkeit den Buchstaben "K" einige Seiten später nochmal zu finden. "Es ist zu erwarten, dass wenn es in einem Buch an einer Stelle um Krieg geht, die Wahrscheinlichkeit hoch ist das Wort Krieg auch einige Seiten später zu finden. Überraschend ist es, dass wir die hohe Wahrscheinlichkeit auch auf der Buchstabenebene finden", so Altmann.
    Schlüsselwörter häufen sich in einzelnen Textpassagen Dabei haben sie die Langzeitkorrelation sowohl zwischen einzelnen Buchstaben, als auch innerhalb höherer sprachlicher Ebenen wie Wörtern gefunden. Innerhalb einzelner Ebenen bleibt die Korrelation dabei erhalten, wenn man verschiedene Texte betrachtet. "Viel interessanter ist es für uns zu überprüfen, wie die Korrelation sich zwischen den Ebenen ändert", sagt Altmann. Die Langzeitkorrelation erlaubt Rückschlüsse, inwieweit einzelne Wörter mit einem Thema in Verbindungen stehen. "Auch die Verbindung zwischen einem Wort und den Buchstaben, aus denen es sich zusammensetzt, lässt sich so analysieren", so Altmann. Darüber hinaus untersuchten die Wissenschaftler auch die sogenannte "Burstiness", die beschreibt, ob ein Zeichenmuster in einer Textpassage vermehrt zu finden ist. Sie zeigt also beispielsweise an, ob ein Wort in einem bestimmten Abschnitt gehäuft vorkommt. Je häufiger ein bestimmtes Wort in einer Passage verwendet wird, desto wahrscheinlicher ist es, dass diese repräsentativ für ein bestimmtes Thema ist. Die Wissenschaftler zeigten, dass bestimmte Wörter zwar im ganzen Text immer wieder vorkommen, aber nicht in einem bestimmten Abschnitt verstärkt zu finden sind. Diese Wörter weisen zwar eine Langzeitkorrelation auf, stehen aber nicht in einer engen Verbindung mit dem Thema. "Das beste Beispiel dafür sind Artikel. Sie kommen in jedem Text sehr oft vor, sind aber nicht entscheidend um ein bestimmtes Thema zu vermitteln", so Altmann.
    Die statistische Textanalyse funktioniert unabhängig von der Sprache Während sowohl Buchstaben als auch Wörter Langzeit-korreliert sind, kommen Buchstaben nur selten an bestimmten Stellen eines Textes gehäuft vor. "Ein Buchstabe ist eben nur sehr selten so eng mit einem Thema verknüpft wie das Wort zu dem er einen Teil beiträgt. Buchstaben sind sozusagen flexibler einsetzbar", sagt Altmann. Ein "a" beispielsweise kann zu einer ganzen Reihe von Wörtern beitragen, die nicht mit demselben Thema in Verbindung stehen. Mit Hilfe der statistischen Analyse von Texten ist es den Forschern gelungen, die prägenden Wörter eines Textes auf einfache Weise zu ermitteln. "Dabei ist es vollkommen egal, in welcher Sprache ein Text geschrieben ist. Es geht nur noch um die Geschichte und nicht um sprachspezifische Regeln", sagt Altmann. Die Ergebnisse könnten zukünftig zur Verbesserung von Internetsuchmaschinen beitragen, aber auch bei Textanalysen und der Suche nach Plagiaten helfen."
  5. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.00
    0.0038066185 = product of:
      0.028549638 = sum of:
        0.020987472 = weight(_text_:und in 4217) [ClassicSimilarity], result of:
          0.020987472 = score(doc=4217,freq=24.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.33931053 = fieldWeight in 4217, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=4217)
        0.007562165 = product of:
          0.01512433 = sum of:
            0.01512433 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.01512433 = score(doc=4217,freq=2.0), product of:
                0.09772735 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.027907511 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Jetzt scheint es allmählich ans Eingemachte zu gehen. Ein von der chinesischen Alibaba-Gruppe entwickelte KI-Programm konnte erstmals Menschen in der Beantwortung von Fragen und dem Verständnis von Text schlagen. Die chinesische Regierung will das Land führend in der Entwicklung von Künstlicher Intelligenz machen und hat dafür eine nationale Strategie aufgestellt. Dazu ernannte das Ministerium für Wissenschaft und Technik die Internetkonzerne Baidu, Alibaba und Tencent sowie iFlyTek zum ersten nationalen Team für die Entwicklung der KI-Technik der nächsten Generation. Baidu ist zuständig für die Entwicklung autonomer Fahrzeuge, Alibaba für die Entwicklung von Clouds für "city brains" (Smart Cities sollen sich an ihre Einwohner und ihre Umgebung anpassen), Tencent für die Enwicklung von Computervision für medizinische Anwendungen und iFlyTec für "Stimmenintelligenz". Die vier Konzerne sollen offene Plattformen herstellen, die auch andere Firmen und Start-ups verwenden können. Überdies wird bei Peking für eine Milliarde US-Dollar ein Technologiepark für die Entwicklung von KI gebaut. Dabei geht es selbstverständlich nicht nur um zivile Anwendungen, sondern auch militärische. Noch gibt es in den USA mehr KI-Firmen, aber China liegt bereits an zweiter Stelle. Das Pentagon ist beunruhigt. Offenbar kommt China rasch vorwärts. Ende 2017 stellte die KI-Firma iFlyTek, die zunächst auf Stimmerkennung und digitale Assistenten spezialisiert war, einen Roboter vor, der den schriftlichen Test der nationalen Medizinprüfung erfolgreich bestanden hatte. Der Roboter war nicht nur mit immensem Wissen aus 53 medizinischen Lehrbüchern, 2 Millionen medizinischen Aufzeichnungen und 400.000 medizinischen Texten und Berichten gefüttert worden, er soll von Medizinexperten klinische Erfahrungen und Falldiagnosen übernommen haben. Eingesetzt werden soll er, in China herrscht vor allem auf dem Land, Ärztemangel, als Helfer, der mit der automatischen Auswertung von Patientendaten eine erste Diagnose erstellt und ansonsten Ärzten mit Vorschlägen zur Seite stehen.
    Date
    22. 1.2018 11:32:44
  6. Voss, O.: Übersetzer überflüssig? : Sprachsoftware DeepL und Acrolinx (2019) 0.00
    0.0017136199 = product of:
      0.025704298 = sum of:
        0.025704298 = weight(_text_:und in 4981) [ClassicSimilarity], result of:
          0.025704298 = score(doc=4981,freq=4.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.41556883 = fieldWeight in 4981, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.09375 = fieldNorm(doc=4981)
      0.06666667 = coord(1/15)
    
    Source
    https://www.tagesspiegel.de/wirtschaft/sprachsoftware-deepl-und-acrolinx-uebersetzer-ueberfluessig/23884348.html
  7. Boleda, G.; Evert, S.: Multiword expressions : a pain in the neck of lexical semantics (2009) 0.00
    0.001512433 = product of:
      0.022686495 = sum of:
        0.022686495 = product of:
          0.04537299 = sum of:
            0.04537299 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
              0.04537299 = score(doc=4888,freq=2.0), product of:
                0.09772735 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.027907511 = queryNorm
                0.46428138 = fieldWeight in 4888, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4888)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    1. 3.2013 14:56:22
  8. Rötzer, F.: Computer ergooglen die Bedeutung von Worten (2005) 0.00
    0.0014527919 = product of:
      0.021791877 = sum of:
        0.021791877 = weight(_text_:und in 3385) [ClassicSimilarity], result of:
          0.021791877 = score(doc=3385,freq=46.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.3523156 = fieldWeight in 3385, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3385)
      0.06666667 = coord(1/15)
    
    Content
    "Wie könnten Computer Sprache lernen und dabei auch die Bedeutung von Worten sowie die Beziehungen zwischen ihnen verstehen? Dieses Problem der Semantik stellt eine gewaltige, bislang nur ansatzweise bewältigte Aufgabe dar, da Worte und Wortverbindungen oft mehrere oder auch viele Bedeutungen haben, die zudem vom außersprachlichen Kontext abhängen. Die beiden holländischen (Ein künstliches Bewusstsein aus einfachen Aussagen (1)). Paul Vitanyi (2) und Rudi Cilibrasi vom Nationalen Institut für Mathematik und Informatik (3) in Amsterdam schlagen eine elegante Lösung vor: zum Nachschlagen im Internet, der größten Datenbank, die es gibt, wird einfach Google benutzt. Objekte wie eine Maus können mit ihren Namen "Maus" benannt werden, die Bedeutung allgemeiner Begriffe muss aus ihrem Kontext gelernt werden. Ein semantisches Web zur Repräsentation von Wissen besteht aus den möglichen Verbindungen, die Objekte und ihre Namen eingehen können. Natürlich können in der Wirklichkeit neue Namen, aber auch neue Bedeutungen und damit neue Verknüpfungen geschaffen werden. Sprache ist lebendig und flexibel. Um einer Künstlichen Intelligenz alle Wortbedeutungen beizubringen, müsste mit der Hilfe von menschlichen Experten oder auch vielen Mitarbeitern eine riesige Datenbank mit den möglichen semantischen Netzen aufgebaut und dazu noch ständig aktualisiert werden. Das aber müsste gar nicht notwendig sein, denn mit dem Web gibt es nicht nur die größte und weitgehend kostenlos benutzbare semantische Datenbank, sie wird auch ständig von zahllosen Internetnutzern aktualisiert. Zudem gibt es Suchmaschinen wie Google, die Verbindungen zwischen Worten und damit deren Bedeutungskontext in der Praxis in ihrer Wahrscheinlichkeit quantitativ mit der Angabe der Webseiten, auf denen sie gefunden wurden, messen.
    Mit einem bereits zuvor von Paul Vitanyi und anderen entwickeltem Verfahren, das den Zusammenhang von Objekten misst (normalized information distance - NID ), kann die Nähe zwischen bestimmten Objekten (Bilder, Worte, Muster, Intervalle, Genome, Programme etc.) anhand aller Eigenschaften analysiert und aufgrund der dominanten gemeinsamen Eigenschaft bestimmt werden. Ähnlich können auch die allgemein verwendeten, nicht unbedingt "wahren" Bedeutungen von Namen mit der Google-Suche erschlossen werden. 'At this moment one database stands out as the pinnacle of computer-accessible human knowledge and the most inclusive summary of statistical information: the Google search engine. There can be no doubt that Google has already enabled science to accelerate tremendously and revolutionized the research process. It has dominated the attention of internet users for years, and has recently attracted substantial attention of many Wall Street investors, even reshaping their ideas of company financing.' (Paul Vitanyi und Rudi Cilibrasi) Gibt man ein Wort ein wie beispielsweise "Pferd", erhält man bei Google 4.310.000 indexierte Seiten. Für "Reiter" sind es 3.400.000 Seiten. Kombiniert man beide Begriffe, werden noch 315.000 Seiten erfasst. Für das gemeinsame Auftreten beispielsweise von "Pferd" und "Bart" werden zwar noch immer erstaunliche 67.100 Seiten aufgeführt, aber man sieht schon, dass "Pferd" und "Reiter" enger zusammen hängen. Daraus ergibt sich eine bestimmte Wahrscheinlichkeit für das gemeinsame Auftreten von Begriffen. Aus dieser Häufigkeit, die sich im Vergleich mit der maximalen Menge (5.000.000.000) an indexierten Seiten ergibt, haben die beiden Wissenschaftler eine statistische Größe entwickelt, die sie "normalised Google distance" (NGD) nennen und die normalerweise zwischen 0 und 1 liegt. Je geringer NGD ist, desto enger hängen zwei Begriffe zusammen. "Das ist eine automatische Bedeutungsgenerierung", sagt Vitanyi gegenüber dern New Scientist (4). "Das könnte gut eine Möglichkeit darstellen, einen Computer Dinge verstehen und halbintelligent handeln zu lassen." Werden solche Suchen immer wieder durchgeführt, lässt sich eine Karte für die Verbindungen von Worten erstellen. Und aus dieser Karte wiederum kann ein Computer, so die Hoffnung, auch die Bedeutung der einzelnen Worte in unterschiedlichen natürlichen Sprachen und Kontexten erfassen. So habe man über einige Suchen realisiert, dass ein Computer zwischen Farben und Zahlen unterscheiden, holländische Maler aus dem 17. Jahrhundert und Notfälle sowie Fast-Notfälle auseinander halten oder elektrische oder religiöse Begriffe verstehen könne. Überdies habe eine einfache automatische Übersetzung Englisch-Spanisch bewerkstelligt werden können. Auf diese Weise ließe sich auch, so hoffen die Wissenschaftler, die Bedeutung von Worten erlernen, könne man Spracherkennung verbessern oder ein semantisches Web erstellen und natürlich endlich eine bessere automatische Übersetzung von einer Sprache in die andere realisieren.
  9. Scobel, G.: GPT: Eine Software, die die Welt verändert (2023) 0.00
    0.0014280165 = product of:
      0.021420246 = sum of:
        0.021420246 = weight(_text_:und in 839) [ClassicSimilarity], result of:
          0.021420246 = score(doc=839,freq=4.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.34630734 = fieldWeight in 839, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=839)
      0.06666667 = coord(1/15)
    
    Abstract
    GPT-3 ist eine jener Entwicklungen, die binnen weniger Monate an Einfluss und Reichweite zulegen. Die Software wird sich massiv auf Ökonomie und Gesellschaft auswirken.
  10. Rötzer, F.: Kann KI mit KI generierte Texte erkennen? (2019) 0.00
    0.0014136643 = product of:
      0.021204963 = sum of:
        0.021204963 = weight(_text_:und in 3977) [ClassicSimilarity], result of:
          0.021204963 = score(doc=3977,freq=8.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.34282678 = fieldWeight in 3977, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3977)
      0.06666667 = coord(1/15)
    
    Abstract
    OpenAI hat einen Algorithmus zur Textgenerierung angeblich nicht vollständig veröffentlicht, weil er so gut sei und Missbrauch und Täuschung ermöglicht. Das u.a. von Elon Musk und Peter Thiel gegründete KI-Unternehmen OpenAI hatte im Februar erklärt, man habe den angeblich am weitesten fortgeschrittenen Algorithmus zur Sprachverarbeitung entwickelt. Der Algorithmus wurde lediglich anhand von 40 Gigabyte an Texten oder an 8 Millionen Webseiten trainiert, das nächste Wort in einem vorgegebenen Textausschnitt vorherzusagen. Damit könne man zusammenhängende, sinnvolle Texte erzeugen, die vielen Anforderungen genügen, zudem könne damit rudimentär Leseverständnis, Antworten auf Fragen, Zusammenfassungen und Übersetzungen erzeugt werden, ohne dies trainiert zu haben.
  11. Baierer, K.; Zumstein, P.: Verbesserung der OCR in digitalen Sammlungen von Bibliotheken (2016) 0.00
    0.0013991648 = product of:
      0.020987472 = sum of:
        0.020987472 = weight(_text_:und in 2818) [ClassicSimilarity], result of:
          0.020987472 = score(doc=2818,freq=6.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.33931053 = fieldWeight in 2818, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=2818)
      0.06666667 = coord(1/15)
    
    Abstract
    Möglichkeiten zur Verbesserung der automatischen Texterkennung (OCR) in digitalen Sammlungen insbesondere durch computerlinguistische Methoden werden beschrieben und bisherige PostOCR-Verfahren analysiert. Im Gegensatz zu diesen Möglichkeiten aus der Forschung oder aus einzelnen Projekten unterscheidet sich die momentane Anwendung von OCR in der Bibliothekspraxis wesentlich und nutzt das Potential nur teilweise aus.
    Content
    Beitrag in einem Themenschwerpunkt 'Computerlinguistik und Bibliotheken'. Vgl.: http://0277.ch/ojs/index.php/cdrs_0277/article/view/155/353.
  12. Stieler, W.: Anzeichen von Bewusstsein bei ChatGPT und Co.? (2023) 0.00
    0.0012242692 = product of:
      0.018364036 = sum of:
        0.018364036 = weight(_text_:und in 1047) [ClassicSimilarity], result of:
          0.018364036 = score(doc=1047,freq=6.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.2968967 = fieldWeight in 1047, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1047)
      0.06666667 = coord(1/15)
    
    Abstract
    Ein interdisziplinäres Forschungsteam hat eine Liste von Eigenschaften aufgestellt, die auf Bewusstsein deuten, und aktuelle KI-Systeme darauf abgeklopft. Ein interdisziplinäres Forscherteam hat ein Paper [https://arxiv.org/abs/2308.08708] veröffentlicht, das eine Liste von 14 "Indikatoren" für Bewusstsein enthält, die aus sechs aktuellen Theorien über das Bewusstsein stammen. Aktuelle KI-Modelle wie GPT-3, Palm-E oder AdA von Deepmind weisen demnach einzelne dieser Indikatoren auf. "Es spricht viel dafür, dass die meisten oder alle Bedingungen für das Bewusstsein, die von derzeitigen Theorien vorgeschlagenen Bedingungen für das Bewusstsein mit den bestehenden Techniken der KI erfüllt werden können", schreiben die Autoren. Zum Team gehörte auch der Deep-Learning-Pionier Yoshua Bengio von der Université de Montréal.
    Source
    https://www.heise.de/hintergrund/Anzeichen-von-Bewusstsein-bei-ChatGPT-und-Co-9295425.html?view=print
  13. Bischoff, M.: Wie eine KI lernt, sich selbst zu erklären (2023) 0.00
    0.0011424132 = product of:
      0.017136198 = sum of:
        0.017136198 = weight(_text_:und in 956) [ClassicSimilarity], result of:
          0.017136198 = score(doc=956,freq=4.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.27704588 = fieldWeight in 956, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=956)
      0.06666667 = coord(1/15)
    
    Abstract
    Große Sprachmodelle wie ChatGPT und Co. neigen dazu, Dinge zu erfinden. Durch einen neuen Ansatz können die Systeme ihre Antworten nun erklären - zumindest teilweise. Vorstellung von Modulen (Luminous, AtMan), die die Zusammenstellung der Aussagen in den Antworten analysieren und erklären.
  14. Dampz, N.: ChatGPT interpretiert jetzt auch Bilder : Neue Version (2023) 0.00
    0.0010097602 = product of:
      0.015146403 = sum of:
        0.015146403 = weight(_text_:und in 874) [ClassicSimilarity], result of:
          0.015146403 = score(doc=874,freq=2.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.24487628 = fieldWeight in 874, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=874)
      0.06666667 = coord(1/15)
    
    Abstract
    Das kalifornische Unternehmen Open AI hat eine neue Version ihres Chatbots ChatGPT vorgestellt. Auffallendste Neuerung: Die Software, die mit Künstlicher Intelligenz funktioniert und bisher auf Text ausgerichtet war, interpretiert nun auch Bilder.
  15. Lutz-Westphal, B.: ChatGPT und der "Faktor Mensch" im schulischen Mathematikunterricht (2023) 0.00
    0.0010097602 = product of:
      0.015146403 = sum of:
        0.015146403 = weight(_text_:und in 930) [ClassicSimilarity], result of:
          0.015146403 = score(doc=930,freq=2.0), product of:
            0.061853286 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.027907511 = queryNorm
            0.24487628 = fieldWeight in 930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=930)
      0.06666667 = coord(1/15)