Search (2 results, page 1 of 1)

  • × theme_ss:"Data Mining"
  • × theme_ss:"Visualisierung"
  • × year_i:[2010 TO 2020}
  1. Maaten, L. van den; Hinton, G.: Visualizing non-metric similarities in multiple maps (2012) 0.04
    0.04194205 = product of:
      0.1677682 = sum of:
        0.1677682 = weight(_text_:objects in 3884) [ClassicSimilarity], result of:
          0.1677682 = score(doc=3884,freq=4.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.49828792 = fieldWeight in 3884, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.046875 = fieldNorm(doc=3884)
      0.25 = coord(1/4)
    
    Abstract
    Techniques for multidimensional scaling visualize objects as points in a low-dimensional metric map. As a result, the visualizations are subject to the fundamental limitations of metric spaces. These limitations prevent multidimensional scaling from faithfully representing non-metric similarity data such as word associations or event co-occurrences. In particular, multidimensional scaling cannot faithfully represent intransitive pairwise similarities in a visualization, and it cannot faithfully visualize "central" objects. In this paper, we present an extension of a recently proposed multidimensional scaling technique called t-SNE. The extension aims to address the problems of traditional multidimensional scaling techniques when these techniques are used to visualize non-metric similarities. The new technique, called multiple maps t-SNE, alleviates these problems by constructing a collection of maps that reveal complementary structure in the similarity data. We apply multiple maps t-SNE to a large data set of word association data and to a data set of NIPS co-authorships, demonstrating its ability to successfully visualize non-metric similarities.
  2. Maaten, L. van den: Accelerating t-SNE using Tree-Based Algorithms (2014) 0.03
    0.03460042 = product of:
      0.13840169 = sum of:
        0.13840169 = weight(_text_:objects in 3886) [ClassicSimilarity], result of:
          0.13840169 = score(doc=3886,freq=2.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.41106653 = fieldWeight in 3886, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3886)
      0.25 = coord(1/4)
    
    Abstract
    The paper investigates the acceleration of t-SNE-an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots-using two tree-based algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in O(N*logN). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.

Types