Search (52 results, page 1 of 3)

  • × theme_ss:"Data Mining"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Winterhalter, C.: Licence to mine : ein Überblick über Rahmenbedingungen von Text and Data Mining und den aktuellen Stand der Diskussion (2016) 0.03
    0.03114036 = product of:
      0.06228072 = sum of:
        0.060400415 = weight(_text_:von in 673) [ClassicSimilarity], result of:
          0.060400415 = score(doc=673,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.47163114 = fieldWeight in 673, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=673)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 673) [ClassicSimilarity], result of:
              0.005640907 = score(doc=673,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=673)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Der Artikel gibt einen Überblick über die Möglichkeiten der Anwendung von Text and Data Mining (TDM) und ähnlichen Verfahren auf der Grundlage bestehender Regelungen in Lizenzverträgen zu kostenpflichtigen elektronischen Ressourcen, die Debatte über zusätzliche Lizenzen für TDM am Beispiel von Elseviers TDM Policy und den Stand der Diskussion über die Einführung von Schrankenregelungen im Urheberrecht für TDM zu nichtkommerziellen wissenschaftlichen Zwecken.
    Type
    a
  2. Mandl, T.: Text mining und data minig (2013) 0.03
    0.027868655 = product of:
      0.05573731 = sum of:
        0.05338693 = weight(_text_:von in 713) [ClassicSimilarity], result of:
          0.05338693 = score(doc=713,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.416867 = fieldWeight in 713, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.078125 = fieldNorm(doc=713)
        0.002350378 = product of:
          0.007051134 = sum of:
            0.007051134 = weight(_text_:a in 713) [ClassicSimilarity], result of:
              0.007051134 = score(doc=713,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 713, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=713)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6., völlig neu gefaßte Ausgabe. Hrsg. von R. Kuhlen, W. Semar u. D. Strauch. Begründet von Klaus Laisiepen, Ernst Lutterbeck, Karl-Heinrich Meyer-Uhlenried
    Type
    a
  3. Drees, B.: Text und data mining : Herausforderungen und Möglichkeiten für Bibliotheken (2016) 0.02
    0.023355268 = product of:
      0.046710536 = sum of:
        0.04530031 = weight(_text_:von in 3952) [ClassicSimilarity], result of:
          0.04530031 = score(doc=3952,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.35372335 = fieldWeight in 3952, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=3952)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 3952) [ClassicSimilarity], result of:
              0.004230681 = score(doc=3952,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 3952, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3952)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Text und Data Mining (TDM) gewinnt als wissenschaftliche Methode zunehmend an Bedeutung und stellt wissenschaftliche Bibliotheken damit vor neue Herausforderungen, bietet gleichzeitig aber auch neue Möglichkeiten. Der vorliegende Beitrag gibt einen Überblick über das Thema TDM aus bibliothekarischer Sicht. Hierzu wird der Begriff Text und Data Mining im Kontext verwandter Begriffe diskutiert sowie Ziele, Aufgaben und Methoden von TDM erläutert. Diese werden anhand beispielhafter TDM-Anwendungen in Wissenschaft und Forschung illustriert. Ferner werden technische und rechtliche Probleme und Hindernisse im TDM-Kontext dargelegt. Abschließend wird die Relevanz von TDM für Bibliotheken, sowohl in ihrer Rolle als Informationsvermittler und -anbieter als auch als Anwender von TDM-Methoden, aufgezeigt. Zudem wurde im Rahmen dieser Arbeit eine Befragung der Betreiber von Dokumentenservern an Bibliotheken in Deutschland zum aktuellen Umgang mit TDM durchgeführt, die zeigt, dass hier noch viel Ausbaupotential besteht. Die dem Artikel zugrunde liegenden Forschungsdaten sind unter dem DOI 10.11588/data/10090 publiziert.
    Type
    a
  4. Jäger, L.: Von Big Data zu Big Brother (2018) 0.02
    0.022688717 = product of:
      0.045377433 = sum of:
        0.02615415 = weight(_text_:von in 5234) [ClassicSimilarity], result of:
          0.02615415 = score(doc=5234,freq=6.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.20422229 = fieldWeight in 5234, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.03125 = fieldNorm(doc=5234)
        0.019223286 = product of:
          0.028834928 = sum of:
            0.0028204536 = weight(_text_:a in 5234) [ClassicSimilarity], result of:
              0.0028204536 = score(doc=5234,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.050957955 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
            0.026014473 = weight(_text_:22 in 5234) [ClassicSimilarity], result of:
              0.026014473 = score(doc=5234,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15476047 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Abstract
    1983 bewegte ein einziges Thema die gesamte Bundesrepublik: die geplante Volkszählung. Jeder Haushalt in Westdeutschland sollte Fragebögen mit 36 Fragen zur Wohnsituation, den im Haushalt lebenden Personen und über ihre Einkommensverhältnisse ausfüllen. Es regte sich massiver Widerstand, hunderte Bürgerinitiativen formierten sich im ganzen Land gegen die Befragung. Man wollte nicht "erfasst" werden, die Privatsphäre war heilig. Es bestand die (berechtigte) Sorge, dass die Antworten auf den eigentlich anonymisierten Fragebögen Rückschlüsse auf die Identität der Befragten zulassen. Das Bundesverfassungsgericht gab den Klägern gegen den Zensus Recht: Die geplante Volkszählung verstieß gegen den Datenschutz und damit auch gegen das Grundgesetz. Sie wurde gestoppt. Nur eine Generation später geben wir sorglos jedes Mal beim Einkaufen die Bonuskarte der Supermarktkette heraus, um ein paar Punkte für ein Geschenk oder Rabatte beim nächsten Einkauf zu sammeln. Und dabei wissen wir sehr wohl, dass der Supermarkt damit unser Konsumverhalten bis ins letzte Detail erfährt. Was wir nicht wissen, ist, wer noch Zugang zu diesen Daten erhält. Deren Käufer bekommen nicht nur Zugriff auf unsere Einkäufe, sondern können über sie auch unsere Gewohnheiten, persönlichen Vorlieben und Einkommen ermitteln. Genauso unbeschwert surfen wir im Internet, googeln und shoppen, mailen und chatten. Google, Facebook und Microsoft schauen bei all dem nicht nur zu, sondern speichern auf alle Zeiten alles, was wir von uns geben, was wir einkaufen, was wir suchen, und verwenden es für ihre eigenen Zwecke. Sie durchstöbern unsere E-Mails, kennen unser persönliches Zeitmanagement, verfolgen unseren momentanen Standort, wissen um unsere politischen, religiösen und sexuellen Präferenzen (wer kennt ihn nicht, den Button "an Männern interessiert" oder "an Frauen interessiert"?), unsere engsten Freunde, mit denen wir online verbunden sind, unseren Beziehungsstatus, welche Schule wir besuchen oder besucht haben und vieles mehr.
    Date
    22. 1.2018 11:33:49
    Source
    https://www.heise.de/tp/features/Von-Big-Data-zu-Big-Brother-3946125.html?view=print
    Type
    a
  5. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.02
    0.019641168 = product of:
      0.07856467 = sum of:
        0.07856467 = product of:
          0.11784701 = sum of:
            0.012090176 = weight(_text_:a in 2338) [ClassicSimilarity], result of:
              0.012090176 = score(doc=2338,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21843673 = fieldWeight in 2338, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
            0.105756834 = weight(_text_:z in 2338) [ClassicSimilarity], result of:
              0.105756834 = score(doc=2338,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41278675 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
    Type
    a
  6. Kipcic, O.; Cramer, C.: Wie Zeitungsinhalte Forschung und Entwicklung befördern (2017) 0.02
    0.019508056 = product of:
      0.039016113 = sum of:
        0.03737085 = weight(_text_:von in 3885) [ClassicSimilarity], result of:
          0.03737085 = score(doc=3885,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.29180688 = fieldWeight in 3885, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3885)
        0.0016452647 = product of:
          0.004935794 = sum of:
            0.004935794 = weight(_text_:a in 3885) [ClassicSimilarity], result of:
              0.004935794 = score(doc=3885,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.089176424 = fieldWeight in 3885, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3885)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Das F.A.Z.-Archiv ist nach innen das Informationszentrum der F.A.Z. Hier ist seine oberste Aufgabe die Informationsversorgung der Redaktionen der F.A.Z. GmbH und der Nachweis der F.A.Z. mit allen Teilen und Ausgaben. Nach außen tritt es als Vermarkter von Zeitungsdaten auf, dies sowohl für das eigene Haus wie auch für Dritte. Klarer Auftrag ist dabei die Generierung von Erlösen für die F.A.Z.-Gruppe durch Informations- und Datenbankdienste für externe Kunden.
    Type
    a
  7. Loonus, Y.: Einsatzbereiche der KI und ihre Relevanz für Information Professionals (2017) 0.02
    0.016721193 = product of:
      0.033442385 = sum of:
        0.03203216 = weight(_text_:von in 5668) [ClassicSimilarity], result of:
          0.03203216 = score(doc=5668,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.2501202 = fieldWeight in 5668, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=5668)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 5668) [ClassicSimilarity], result of:
              0.004230681 = score(doc=5668,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 5668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5668)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Es liegt in der Natur des Menschen, Erfahrungen und Ideen in Wort und Schrift mit anderen teilen zu wollen. So produzieren wir jeden Tag gigantische Mengen an Texten, die in digitaler Form geteilt und abgelegt werden. The Radicati Group schätzt, dass 2017 täglich 269 Milliarden E-Mails versendet und empfangen werden. Hinzu kommen größtenteils unstrukturierte Daten wie Soziale Medien, Presse, Websites und firmeninterne Systeme, beispielsweise in Form von CRM-Software oder PDF-Dokumenten. Der weltweite Bestand an unstrukturierten Daten wächst so rasant, dass es kaum möglich ist, seinen Umfang zu quantifizieren. Der Versuch, eine belastbare Zahl zu recherchieren, führt unweigerlich zu diversen Artikeln, die den Anteil unstrukturierter Texte am gesamten Datenbestand auf 80% schätzen. Auch wenn nicht mehr einwandfrei nachvollziehbar ist, woher diese Zahl stammt, kann bei kritischer Reflexion unseres Tagesablaufs kaum bezweifelt werden, dass diese Daten von großer wirtschaftlicher Relevanz sind.
    Type
    a
  8. Sarnikar, S.; Zhang, Z.; Zhao, J.L.: Query-performance prediction for effective query routing in domain-specific repositories (2014) 0.02
    0.016518347 = product of:
      0.06607339 = sum of:
        0.06607339 = product of:
          0.09911008 = sum of:
            0.008461362 = weight(_text_:a in 1326) [ClassicSimilarity], result of:
              0.008461362 = score(doc=1326,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 1326, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
            0.09064872 = weight(_text_:z in 1326) [ClassicSimilarity], result of:
              0.09064872 = score(doc=1326,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.35381722 = fieldWeight in 1326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The effective use of corporate memory is becoming increasingly important because every aspect of e-business requires access to information repositories. Unfortunately, less-than-satisfying effectiveness in state-of-the-art information-retrieval techniques is well known, even for some of the best search engines such as Google. In this study, the authors resolve this retrieval ineffectiveness problem by developing a new framework for predicting query performance, which is the first step toward better retrieval effectiveness. Specifically, they examine the relationship between query performance and query context. A query context consists of the query itself, the document collection, and the interaction between the two. The authors first analyze the characteristics of query context and develop various features for predicting query performance. Then, they propose a context-sensitive model for predicting query performance based on the characteristics of the query and the document collection. Finally, they validate this model with respect to five real-world collections of documents and demonstrate its utility in routing queries to the correct repository with high accuracy.
    Type
    a
  9. Nohr, H.: Big Data im Lichte der EU-Datenschutz-Grundverordnung (2017) 0.02
    0.016040254 = product of:
      0.03208051 = sum of:
        0.030200208 = weight(_text_:von in 4076) [ClassicSimilarity], result of:
          0.030200208 = score(doc=4076,freq=2.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.23581557 = fieldWeight in 4076, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=4076)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 4076) [ClassicSimilarity], result of:
              0.005640907 = score(doc=4076,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 4076, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4076)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Der vorliegende Beitrag beschäftigt sich mit den Rahmenbedingungen für analytische Anwendungen wie Big Data, die durch das neue europäische Datenschutzrecht entstehen, insbesondere durch die EU-Datenschutz-Grundverordnung. Er stellt wesentliche Neuerungen vor und untersucht die spezifischen datenschutzrechtlichen Regelungen im Hinblick auf den Einsatz von Big Data sowie Voraussetzungen, die durch die Verordnung abverlangt werden.
    Type
    a
  10. Ma, Z.; Sun, A.; Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter (2013) 0.01
    0.014029406 = product of:
      0.056117624 = sum of:
        0.056117624 = product of:
          0.084176436 = sum of:
            0.00863584 = weight(_text_:a in 967) [ClassicSimilarity], result of:
              0.00863584 = score(doc=967,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15602624 = fieldWeight in 967, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
            0.075540595 = weight(_text_:z in 967) [ClassicSimilarity], result of:
              0.075540595 = score(doc=967,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro-F1 measure. We also observe that contextual features are more effective than content features.
    Type
    a
  11. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.013904001 = product of:
      0.055616003 = sum of:
        0.055616003 = product of:
          0.083424 = sum of:
            0.007883408 = weight(_text_:a in 2345) [ClassicSimilarity], result of:
              0.007883408 = score(doc=2345,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 2345, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
            0.075540595 = weight(_text_:z in 2345) [ClassicSimilarity], result of:
              0.075540595 = score(doc=2345,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 2345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Type
    a
  12. Suakkaphong, N.; Zhang, Z.; Chen, H.: Disease named entity recognition using semisupervised learning and conditional random fields (2011) 0.01
    0.0137652885 = product of:
      0.055061154 = sum of:
        0.055061154 = product of:
          0.08259173 = sum of:
            0.007051134 = weight(_text_:a in 4367) [ClassicSimilarity], result of:
              0.007051134 = score(doc=4367,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 4367, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
            0.075540595 = weight(_text_:z in 4367) [ClassicSimilarity], result of:
              0.075540595 = score(doc=4367,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 4367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Information extraction is an important text-mining task that aims at extracting prespecified types of information from large text collections and making them available in structured representations such as databases. In the biomedical domain, information extraction can be applied to help biologists make the most use of their digital-literature archives. Currently, there are large amounts of biomedical literature that contain rich information about biomedical substances. Extracting such knowledge requires a good named entity recognition technique. In this article, we combine conditional random fields (CRFs), a state-of-the-art sequence-labeling algorithm, with two semisupervised learning techniques, bootstrapping and feature sampling, to recognize disease names from biomedical literature. Two data-processing strategies for each technique also were analyzed: one sequentially processing unlabeled data partitions and another one processing unlabeled data partitions in a round-robin fashion. The experimental results showed the advantage of semisupervised learning techniques given limited labeled training data. Specifically, CRFs with bootstrapping implemented in sequential fashion outperformed strictly supervised CRFs for disease name recognition. The project was supported by NIH/NLM Grant R33 LM07299-01, 2002-2005.
    Type
    a
  13. Zhang, Z.; Li, Q.; Zeng, D.; Ga, H.: Extracting evolutionary communities in community question answering (2014) 0.01
    0.0137652885 = product of:
      0.055061154 = sum of:
        0.055061154 = product of:
          0.08259173 = sum of:
            0.007051134 = weight(_text_:a in 1286) [ClassicSimilarity], result of:
              0.007051134 = score(doc=1286,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 1286, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
            0.075540595 = weight(_text_:z in 1286) [ClassicSimilarity], result of:
              0.075540595 = score(doc=1286,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 1286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    With the rapid growth of Web 2.0, community question answering (CQA) has become a prevalent information seeking channel, in which users form interactive communities by posting questions and providing answers. Communities may evolve over time, because of changes in users' interests, activities, and new users joining the network. To better understand user interactions in CQA communities, it is necessary to analyze the community structures and track community evolution over time. Existing work in CQA focuses on question searching or content quality detection, and the important problems of community extraction and evolutionary pattern detection have not been studied. In this article, we propose a probabilistic community model (PCM) to extract overlapping community structures and capture their evolution patterns in CQA. The empirical results show that our algorithm appears to improve the community extraction quality. We show empirically, using the iPhone data set, that interesting community evolution patterns can be discovered, with each evolution pattern reflecting the variation of users' interests over time. Our analysis suggests that individual users could benefit to gain comprehensive information from tracking the transition of products. We also show that the communities provide a decision-making basis for business.
    Type
    a
  14. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.006974311 = product of:
      0.027897244 = sum of:
        0.027897244 = product of:
          0.041845866 = sum of:
            0.009327774 = weight(_text_:a in 5011) [ClassicSimilarity], result of:
              0.009327774 = score(doc=5011,freq=14.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.1685276 = fieldWeight in 5011, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
            0.032518093 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.032518093 = score(doc=5011,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Type
    a
  15. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.0067335833 = product of:
      0.026934333 = sum of:
        0.026934333 = product of:
          0.0404015 = sum of:
            0.007883408 = weight(_text_:a in 668) [ClassicSimilarity], result of:
              0.007883408 = score(doc=668,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 668, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
            0.032518093 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.032518093 = score(doc=668,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Type
    a
  16. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.006594871 = product of:
      0.026379485 = sum of:
        0.026379485 = product of:
          0.039569225 = sum of:
            0.007051134 = weight(_text_:a in 1605) [ClassicSimilarity], result of:
              0.007051134 = score(doc=1605,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 1605, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
            0.032518093 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.032518093 = score(doc=1605,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
    Type
    a
  17. Ebrahimi, M.; ShafieiBavani, E.; Wong, R.; Chen, F.: Twitter user geolocation by filtering of highly mentioned users (2018) 0.00
    0.0011148823 = product of:
      0.004459529 = sum of:
        0.004459529 = product of:
          0.013378588 = sum of:
            0.013378588 = weight(_text_:a in 4286) [ClassicSimilarity], result of:
              0.013378588 = score(doc=4286,freq=20.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.24171482 = fieldWeight in 4286, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4286)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Geolocated social media data provide a powerful source of information about places and regional human behavior. Because only a small amount of social media data have been geolocation-annotated, inference techniques play a substantial role to increase the volume of annotated data. Conventional research in this area has been based on the text content of posts from a given user or the social network of the user, with some recent crossovers between the text- and network-based approaches. This paper proposes a novel approach to categorize highly-mentioned users (celebrities) into Local and Global types, and consequently use Local celebrities as location indicators. A label propagation algorithm is then used over the refined social network for geolocation inference. Finally, we propose a hybrid approach by merging a text-based method as a back-off strategy into our network-based approach. Empirical experiments over three standard Twitter benchmark data sets demonstrate that our approach outperforms state-of-the-art user geolocation methods.
    Type
    a
  18. Ekbia, H.; Mattioli, M.; Kouper, I.; Arave, G.; Ghazinejad, A.; Bowman, T.; Suri, V.R.; Tsou, A.; Weingart, S.; Sugimoto, C.R.: Big data, bigger dilemmas : a critical review (2015) 0.00
    0.0010992887 = product of:
      0.004397155 = sum of:
        0.004397155 = product of:
          0.013191464 = sum of:
            0.013191464 = weight(_text_:a in 2155) [ClassicSimilarity], result of:
              0.013191464 = score(doc=2155,freq=28.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23833402 = fieldWeight in 2155, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2155)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The recent interest in Big Data has generated a broad range of new academic, corporate, and policy practices along with an evolving debate among its proponents, detractors, and skeptics. While the practices draw on a common set of tools, techniques, and technologies, most contributions to the debate come either from a particular disciplinary perspective or with a focus on a domain-specific issue. A close examination of these contributions reveals a set of common problematics that arise in various guises and in different places. It also demonstrates the need for a critical synthesis of the conceptual and practical dilemmas surrounding Big Data. The purpose of this article is to provide such a synthesis by drawing on relevant writings in the sciences, humanities, policy, and trade literature. In bringing these diverse literatures together, we aim to shed light on the common underlying issues that concern and affect all of these areas. By contextualizing the phenomenon of Big Data within larger socioeconomic developments, we also seek to provide a broader understanding of its drivers, barriers, and challenges. This approach allows us to identify attributes of Big Data that require more attention-autonomy, opacity, generativity, disparity, and futurity-leading to questions and ideas for moving beyond dilemmas.
    Type
    a
  19. Berendt, B.; Krause, B.; Kolbe-Nusser, S.: Intelligent scientific authoring tools : interactive data mining for constructive uses of citation networks (2010) 0.00
    0.0010576702 = product of:
      0.004230681 = sum of:
        0.004230681 = product of:
          0.012692042 = sum of:
            0.012692042 = weight(_text_:a in 4226) [ClassicSimilarity], result of:
              0.012692042 = score(doc=4226,freq=18.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22931081 = fieldWeight in 4226, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4226)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Many powerful methods and tools exist for extracting meaning from scientific publications, their texts, and their citation links. However, existing proposals often neglect a fundamental aspect of learning: that understanding and learning require an active and constructive exploration of a domain. In this paper, we describe a new method and a tool that use data mining and interactivity to turn the typical search and retrieve dialogue, in which the user asks questions and a system gives answers, into a dialogue that also involves sense-making, in which the user has to become active by constructing a bibliography and a domain model of the search term(s). This model starts from an automatically generated and annotated clustering solution that is iteratively modified by users. The tool is part of an integrated authoring system covering all phases from search through reading and sense-making to writing. Two evaluation studies demonstrate the usability of this interactive and constructive approach, and they show that clusters and groups represent identifiable sub-topics.
    Type
    a
  20. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.00
    9.97181E-4 = product of:
      0.003988724 = sum of:
        0.003988724 = product of:
          0.011966172 = sum of:
            0.011966172 = weight(_text_:a in 3205) [ClassicSimilarity], result of:
              0.011966172 = score(doc=3205,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.2161963 = fieldWeight in 3205, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
    Type
    a

Languages

  • e 45
  • d 7

Classifications