Search (155 results, page 3 of 8)

  • × theme_ss:"Data Mining"
  1. Lingras, P.J.; Yao, Y.Y.: Data mining using extensions of the rough set model (1998) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 2910) [ClassicSimilarity], result of:
              0.010589487 = score(doc=2910,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 2910, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2910)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Examines basic issues of data mining using the theory of rough sets, which is a recent proposal for generalizing classical set theory. The Pawlak rough set model is based on the concept of an equivalence relation. A generalized rough set model need not be based on equivalence relation axioms. The Pawlak rough set model has been used for deriving deterministic as well as probabilistic rules froma complete database. Demonstrates that a generalised rough set model can be used for generating rules from incomplete databases. These rules are based on plausability functions proposed by Shafer. Discusses the importance of rule extraction from incomplete databases in data mining
    Footnote
    Contribution to a special issue devoted to knowledge discovery and data mining
    Type
    a
  2. Maaten, L. van den: Learning a parametric embedding by preserving local structure (2009) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 3883) [ClassicSimilarity], result of:
              0.010589487 = score(doc=3883,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 3883, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper presents a new unsupervised dimensionality reduction technique, called parametric t-SNE, that learns a parametric mapping between the high-dimensional data space and the low-dimensional latent space. Parametric t-SNE learns the parametric mapping in such a way that the local structure of the data is preserved as well as possible in the latent space. We evaluate the performance of parametric t-SNE in experiments on three datasets, in which we compare it to the performance of two other unsupervised parametric dimensionality reduction techniques. The results of experiments illustrate the strong performance of parametric t-SNE, in particular, in learning settings in which the dimensionality of the latent space is relatively low.
    Type
    a
  3. Wu, T.; Pottenger, W.M.: ¬A semi-supervised active learning algorithm for information extraction from textual data (2005) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 3237) [ClassicSimilarity], result of:
              0.010148063 = score(doc=3237,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 3237, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3237)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we present a semi-supervised active learning algorithm for pattern discovery in information extraction from textual data. The patterns are reduced regular expressions composed of various characteristics of features useful in information extraction. Our major contribution is a semi-supervised learning algorithm that extracts information from a set of examples labeled as relevant or irrelevant to a given attribute. The approach is semi-supervised because it does not require precise labeling of the exact location of features in the training data. This significantly reduces the effort needed to develop a training set. An active learning algorithm is used to assist the semi-supervised learning algorithm to further reduce the training set development effort. The active learning algorithm is seeded with a Single positive example of a given attribute. The context of the seed is used to automatically identify candidates for additional positive examples of the given attribute. Candidate examples are manually pruned during the active learning phase, and our semi-supervised learning algorithm automatically discovers reduced regular expressions for each attribute. We have successfully applied this learning technique in the extraction of textual features from police incident reports, university crime reports, and patents. The performance of our algorithm compares favorably with competitive extraction systems being used in criminal justice information systems.
    Type
    a
  4. Haravu, L.J.; Neelameghan, A.: Text mining and data mining in knowledge organization and discovery : the making of knowledge-based products (2003) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 5653) [ClassicSimilarity], result of:
              0.010148063 = score(doc=5653,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 5653, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5653)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the importance of knowledge organization in the context of the information overload caused by the vast quantities of data and information accessible on internal and external networks of an organization. Defines the characteristics of a knowledge-based product. Elaborates on the techniques and applications of text mining in developing knowledge products. Presents two approaches, as case studies, to the making of knowledge products: (1) steps and processes in the planning, designing and development of a composite multilingual multimedia CD product, with the potential international, inter-cultural end users in view, and (2) application of natural language processing software in text mining. Using a text mining software, it is possible to link concept terms from a processed text to a related thesaurus, glossary, schedules of a classification scheme, and facet structured subject representations. Concludes that the products of text mining and data mining could be made more useful if the features of a faceted scheme for subject classification are incorporated into text mining techniques and products.
    Type
    a
  5. Liu, Y.; Huang, X.; An, A.: Personalized recommendation with adaptive mixture of markov models (2007) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 606) [ClassicSimilarity], result of:
              0.010148063 = score(doc=606,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 606, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With more and more information available on the Internet, the task of making personalized recommendations to assist the user's navigation has become increasingly important. Considering there might be millions of users with different backgrounds accessing a Web site everyday, it is infeasible to build a separate recommendation system for each user. To address this problem, clustering techniques can first be employed to discover user groups. Then, user navigation patterns for each group can be discovered, to allow the adaptation of a Web site to the interest of each individual group. In this paper, we propose to model user access sequences as stochastic processes, and a mixture of Markov models based approach is taken to cluster users and to capture the sequential relationships inherent in user access histories. Several important issues that arise in constructing the Markov models are also addressed. The first issue lies in the complexity of the mixture of Markov models. To improve the efficiency of building/maintaining the mixture of Markov models, we develop a lightweight adapt-ive algorithm to update the model parameters without recomputing model parameters from scratch. The second issue concerns the proper selection of training data for building the mixture of Markov models. We investigate two different training data selection strategies and perform extensive experiments to compare their effectiveness on a real dataset that is generated by a Web-based knowledge management system, Livelink.
    Type
    a
  6. Liu, Y.; Zhang, M.; Cen, R.; Ru, L.; Ma, S.: Data cleansing for Web information retrieval using query independent features (2007) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 607) [ClassicSimilarity], result of:
              0.010148063 = score(doc=607,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 607, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=607)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Understanding what kinds of Web pages are the most useful for Web search engine users is a critical task in Web information retrieval (IR). Most previous works used hyperlink analysis algorithms to solve this problem. However, little research has been focused on query-independent Web data cleansing for Web IR. In this paper, we first provide analysis of the differences between retrieval target pages and ordinary ones based on more than 30 million Web pages obtained from both the Text Retrieval Conference (TREC) and a widely used Chinese search engine, SOGOU (www.sogou.com). We further propose a learning-based data cleansing algorithm for reducing Web pages that are unlikely to be useful for user requests. We found that there exists a large proportion of low-quality Web pages in both the English and the Chinese Web page corpus, and retrieval target pages can be identified using query-independent features and cleansing algorithms. The experimental results showed that our algorithm is effective in reducing a large portion of Web pages with a small loss in retrieval target pages. It makes it possible for Web IR tools to meet a large fraction of users' needs with only a small part of pages on the Web. These results may help Web search engines make better use of their limited storage and computation resources to improve search performance.
    Type
    a
  7. Wu, X.: Rule induction with extension matrices (1998) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2912) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2912,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2912, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents a heuristic, attribute-based, noise-tolerant data mining program, HCV (Version 2.0), absed on the newly-developed extension matrix approach. Gives a simple example of attribute-based induction to show the difference between the rules in variable-valued logic produced by HCV, the decision tree generated by C4.5 and the decision tree's decompiled rules by C4.5 rules. Outlines the extension matrix approach for data mining. Describes the HCV algorithm in detail. Outlines techniques developed and implemented in the HCV program for noise handling and discretization of continuous domains respectively. Follows these with a performance comparison of HCV with famous ID3-like algorithms including C4.5 and C4.5 rules on a collection of standard databases including the famous MONK's problems
    Footnote
    Contribution to a special issue devoted to knowledge discovery and data mining
    Type
    a
  8. Fenstermacher, K.D.; Ginsburg, M.: Client-side monitoring for Web mining (2003) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 1611) [ClassicSimilarity], result of:
              0.00994303 = score(doc=1611,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 1611, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1611)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "Garbage in, garbage out" is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user's actions ever reaches the Web server, analysts must rely an incomplete data. In this paper, we propose a client-side monitoring system that is unobtrusive and supports flexible data collection. Moreover, the proposed framework encompasses client-side applications beyond the Web browser. Expanding monitoring beyond the browser to incorporate standard office productivity tools enables analysts to derive a much richer and more accurate picture of user behavior an the Web.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"
    Type
    a
  9. Gaizauskas, R.; Wilks, Y.: Information extraction : beyond document retrieval (1998) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4716) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4716,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4716, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4716)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper we give a synoptic view of the growth of the text processing technology of informatione xtraction (IE) whose function is to extract information about a pre-specified set of entities, relations or events from natural language texts and to record this information in structured representations called templates. Here we describe the nature of the IE task, review the history of the area from its origins in AI work in the 1960s and 70s till the present, discuss the techniques being used to carry out the task, describe application areas where IE systems are or are about to be at work, and conclude with a discussion of the challenges facing the area. What emerges is a picture of an exciting new text processing technology with a host of new applications, both on its own and in conjunction with other technologies, such as information retrieval, machine translation and data mining
    Type
    a
  10. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 1205) [ClassicSimilarity], result of:
              0.00994303 = score(doc=1205,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 1205, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
    Type
    a
  11. Saz, J.T.: Perspectivas en recuperacion y explotacion de informacion electronica : el 'data mining' (1997) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3723) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3723,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3723, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3723)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents the concept and the techniques identified by the term data mining. Explains the principles and phases of developing a data mining process, and the main types of data mining tools
    Type
    a
  12. Tu, Y.-N.; Hsu, S.-L.: Constructing conceptual trajectory maps to trace the development of research fields (2016) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3059) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3059,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3059, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3059)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study proposes a new method to construct and trace the trajectory of conceptual development of a research field by combining main path analysis, citation analysis, and text-mining techniques. Main path analysis, a method used commonly to trace the most critical path in a citation network, helps describe the developmental trajectory of a research field. This study extends the main path analysis method and applies text-mining techniques in the new method, which reflects the trajectory of conceptual development in an academic research field more accurately than citation frequency, which represents only the articles examined. Articles can be merged based on similarity of concepts, and by merging concepts the history of a research field can be described more precisely. The new method was applied to the "h-index" and "text mining" fields. The precision, recall, and F-measures of the h-index were 0.738, 0.652, and 0.658 and those of text-mining were 0.501, 0.653, and 0.551, respectively. Last, this study not only establishes the conceptual trajectory map of a research field, but also recommends keywords that are more precise than those used currently by researchers. These precise keywords could enable researchers to gather related works more quickly than before.
    Type
    a
  13. Maaten, L. van den; Hinton, G.: Visualizing data using t-SNE (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3888) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3888,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3888, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3888)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.
    Type
    a
  14. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 5053) [ClassicSimilarity], result of:
              0.009567685 = score(doc=5053,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 5053, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5053)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
    Type
    a
  15. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3835) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3835,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Schmid, J.: Data mining : wie finde ich in Datensammlungen entscheidungsrelevante Muster? (1999) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4540) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4540,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4540)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 601) [ClassicSimilarity], result of:
              0.009471525 = score(doc=601,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 601, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=601)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
    Type
    a
  18. Blake, C.: Text mining (2011) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 1599) [ClassicSimilarity], result of:
              0.009471525 = score(doc=1599,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 1599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1599)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  19. Cardie, C.: Empirical methods in information extraction (1997) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 3246) [ClassicSimilarity], result of:
              0.009374379 = score(doc=3246,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 3246, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3246)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Surveys the use of empirical, machine-learning methods for information extraction. Presents a generic architecture for information extraction systems and surveys the learning algorithms that have been developed to address the problems of accuracy, portability, and knowledge acquisition for each component of the architecture
    Footnote
    Contribution to a special section reviewing recent research in empirical methods in speech recognition, syntactic parsing, semantic processing, information extraction and machine translation
    Type
    a
  20. Chardonnens, A.; Hengchen, S.: Text mining for cultural heritage institutions : a 5-step method for cultural heritage institutions (2017) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 646) [ClassicSimilarity], result of:
              0.009374379 = score(doc=646,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 646, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Years

Languages

  • e 125
  • d 29
  • sp 1
  • More… Less…

Types

  • a 141
  • el 15
  • m 10
  • s 9
  • More… Less…