Search (6 results, page 1 of 1)

  • × theme_ss:"Elektronisches Publizieren"
  • × theme_ss:"Informetrie"
  1. Zahedi, Z.; Costas, R.; Wouters, P.: Mendeley readership as a filtering tool to identify highly cited publications (2017) 0.01
    0.010202759 = product of:
      0.020405518 = sum of:
        0.020405518 = product of:
          0.040811036 = sum of:
            0.040811036 = weight(_text_:work in 3837) [ClassicSimilarity], result of:
              0.040811036 = score(doc=3837,freq=2.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.20276234 = fieldWeight in 3837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3837)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study presents a large-scale analysis of the distribution and presence of Mendeley readership scores over time and across disciplines. We study whether Mendeley readership scores (RS) can identify highly cited publications more effectively than journal citation scores (JCS). Web of Science (WoS) publications with digital object identifiers (DOIs) published during the period 2004-2013 and across five major scientific fields were analyzed. The main result of this study shows that RS are more effective (in terms of precision/recall values) than JCS to identify highly cited publications across all fields of science and publication years. The findings also show that 86.5% of all the publications are covered by Mendeley and have at least one reader. Also, the share of publications with Mendeley RS is increasing from 84% in 2004 to 89% in 2009, and decreasing from 88% in 2010 to 82% in 2013. However, it is noted that publications from 2010 onwards exhibit on average a higher density of readership versus citation scores. This indicates that compared to citation scores, RS are more prevalent for recent publications and hence they could work as an early indicator of research impact. These findings highlight the potential and value of Mendeley as a tool for scientometric purposes and particularly as a relevant tool to identify highly cited publications.
  2. Cabanac, G.; Labbé, C.: Prevalence of nonsensical algorithmically generated papers in the scientific literature (2021) 0.01
    0.010202759 = product of:
      0.020405518 = sum of:
        0.020405518 = product of:
          0.040811036 = sum of:
            0.040811036 = weight(_text_:work in 410) [ClassicSimilarity], result of:
              0.040811036 = score(doc=410,freq=2.0), product of:
                0.20127523 = queryWeight, product of:
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.054837555 = queryNorm
                0.20276234 = fieldWeight in 410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.6703904 = idf(docFreq=3060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=410)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In 2014 leading publishers withdrew more than 120 nonsensical publications automatically generated with the SCIgen program. Casual observations suggested that similar problematic papers are still published and sold, without follow-up retractions. No systematic screening has been performed and the prevalence of such nonsensical publications in the scientific literature is unknown. Our contribution is 2-fold. First, we designed a detector that combs the scientific literature for grammar-based computer-generated papers. Applied to SCIgen, it has a 83.6% precision. Second, we performed a scientometric study of the 243 detected SCIgen-papers from 19 publishers. We estimate the prevalence of SCIgen-papers to be 75 per million papers in Information and Computing Sciences. Only 19% of the 243 problematic papers were dealt with: formal retraction (12) or silent removal (34). Publishers still serve and sometimes sell the remaining 197 papers without any caveat. We found evidence of citation manipulation via edited SCIgen bibliographies. This work reveals metric gaming up to the point of absurdity: fraudsters publish nonsensical algorithmically generated papers featuring genuine references. It stresses the need to screen papers for nonsense before peer-review and chase citation manipulation in published papers. Overall, this is yet another illustration of the harmful effects of the pressure to publish or perish.
  3. Walters, W.H.; Linvill, A.C.: Bibliographic index coverage of open-access journals in six subject areas (2011) 0.01
    0.009287165 = product of:
      0.01857433 = sum of:
        0.01857433 = product of:
          0.03714866 = sum of:
            0.03714866 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.03714866 = score(doc=4635,freq=2.0), product of:
                0.19203177 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.054837555 = queryNorm
                0.19345059 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4635)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate the extent to which open-access (OA) journals and articles in biology, computer science, economics, history, medicine, and psychology are indexed in each of 11 bibliographic databases. We also look for variations in index coverage by journal subject, journal size, publisher type, publisher size, date of first OA issue, region of publication, language of publication, publication fee, and citation impact factor. Two databases, Biological Abstracts and PubMed, provide very good coverage of the OA journal literature, indexing 60 to 63% of all OA articles in their disciplines. Five databases provide moderately good coverage (22-41%), and four provide relatively poor coverage (0-12%). OA articles in biology journals, English-only journals, high-impact journals, and journals that charge publication fees of $1,000 or more are especially likely to be indexed. Conversely, articles from OA publishers in Africa, Asia, or Central/South America are especially unlikely to be indexed. Four of the 11 databases index commercially published articles at a substantially higher rate than articles published by universities, scholarly societies, nonprofit publishers, or governments. Finally, three databases-EBSCO Academic Search Complete, ProQuest Research Library, and Wilson OmniFile-provide less comprehensive coverage of OA articles than of articles in comparable subscription journals.
  4. Moed, H.F.; Halevi, G.: On full text download and citation distributions in scientific-scholarly journals (2016) 0.01
    0.009287165 = product of:
      0.01857433 = sum of:
        0.01857433 = product of:
          0.03714866 = sum of:
            0.03714866 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.03714866 = score(doc=2646,freq=2.0), product of:
                0.19203177 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.054837555 = queryNorm
                0.19345059 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2016 14:11:17
  5. Ortega, J.L.: ¬The presence of academic journals on Twitter and its relationship with dissemination (tweets) and research impact (citations) (2017) 0.01
    0.009287165 = product of:
      0.01857433 = sum of:
        0.01857433 = product of:
          0.03714866 = sum of:
            0.03714866 = weight(_text_:22 in 4410) [ClassicSimilarity], result of:
              0.03714866 = score(doc=4410,freq=2.0), product of:
                0.19203177 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.054837555 = queryNorm
                0.19345059 = fieldWeight in 4410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4410)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  6. Costas, R.; Perianes-Rodríguez, A.; Ruiz-Castillo, J.: On the quest for currencies of science : field "exchange rates" for citations and Mendeley readership (2017) 0.01
    0.0074297315 = product of:
      0.014859463 = sum of:
        0.014859463 = product of:
          0.029718926 = sum of:
            0.029718926 = weight(_text_:22 in 4051) [ClassicSimilarity], result of:
              0.029718926 = score(doc=4051,freq=2.0), product of:
                0.19203177 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.054837555 = queryNorm
                0.15476047 = fieldWeight in 4051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22