Search (11 results, page 1 of 1)

  • × theme_ss:"Elektronisches Publizieren"
  • × theme_ss:"Informetrie"
  1. Lozano, G.A.; Larivière, V.; Gingras, Y.: ¬The weakening relationship between the impact factor and papers' citations in the digital age (2012) 0.02
    0.01865498 = product of:
      0.07461992 = sum of:
        0.07461992 = weight(_text_:digital in 486) [ClassicSimilarity], result of:
          0.07461992 = score(doc=486,freq=6.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.37742734 = fieldWeight in 486, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=486)
      0.25 = coord(1/4)
    
    Abstract
    Historically, papers have been physically bound to the journal in which they were published; but in the digital age papers are available individually, no longer tied to their respective journals. Hence, papers now can be read and cited based on their own merits, independently of the journal's physical availability, reputation, or impact factor (IF). We compare the strength of the relationship between journals' IFs and the actual citations received by their respective papers from 1902 to 2009. Throughout most of the 20th century, papers' citation rates were increasingly linked to their respective journals' IFs. However, since 1990, the advent of the digital age, the relation between IFs and paper citations has been weakening. This began first in physics, a field that was quick to make the transition into the electronic domain. Furthermore, since 1990 the overall proportion of highly cited papers coming from highly cited journals has been decreasing and, of these highly cited papers, the proportion not coming from highly cited journals has been increasing. Should this pattern continue, it might bring an end to the use of the IF as a way to evaluate the quality of journals, papers, and researchers.
  2. Walters, W.H.; Linvill, A.C.: Bibliographic index coverage of open-access journals in six subject areas (2011) 0.02
    0.01805985 = product of:
      0.0361197 = sum of:
        0.01914278 = weight(_text_:library in 4635) [ClassicSimilarity], result of:
          0.01914278 = score(doc=4635,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 4635, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4635)
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.033953834 = score(doc=4635,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4635)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We investigate the extent to which open-access (OA) journals and articles in biology, computer science, economics, history, medicine, and psychology are indexed in each of 11 bibliographic databases. We also look for variations in index coverage by journal subject, journal size, publisher type, publisher size, date of first OA issue, region of publication, language of publication, publication fee, and citation impact factor. Two databases, Biological Abstracts and PubMed, provide very good coverage of the OA journal literature, indexing 60 to 63% of all OA articles in their disciplines. Five databases provide moderately good coverage (22-41%), and four provide relatively poor coverage (0-12%). OA articles in biology journals, English-only journals, high-impact journals, and journals that charge publication fees of $1,000 or more are especially likely to be indexed. Conversely, articles from OA publishers in Africa, Asia, or Central/South America are especially unlikely to be indexed. Four of the 11 databases index commercially published articles at a substantially higher rate than articles published by universities, scholarly societies, nonprofit publishers, or governments. Finally, three databases-EBSCO Academic Search Complete, ProQuest Research Library, and Wilson OmniFile-provide less comprehensive coverage of OA articles than of articles in comparable subscription journals.
  3. Zahedi, Z.; Costas, R.; Wouters, P.: Mendeley readership as a filtering tool to identify highly cited publications (2017) 0.01
    0.010770457 = product of:
      0.043081827 = sum of:
        0.043081827 = weight(_text_:digital in 3837) [ClassicSimilarity], result of:
          0.043081827 = score(doc=3837,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 3837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3837)
      0.25 = coord(1/4)
    
    Abstract
    This study presents a large-scale analysis of the distribution and presence of Mendeley readership scores over time and across disciplines. We study whether Mendeley readership scores (RS) can identify highly cited publications more effectively than journal citation scores (JCS). Web of Science (WoS) publications with digital object identifiers (DOIs) published during the period 2004-2013 and across five major scientific fields were analyzed. The main result of this study shows that RS are more effective (in terms of precision/recall values) than JCS to identify highly cited publications across all fields of science and publication years. The findings also show that 86.5% of all the publications are covered by Mendeley and have at least one reader. Also, the share of publications with Mendeley RS is increasing from 84% in 2004 to 89% in 2009, and decreasing from 88% in 2010 to 82% in 2013. However, it is noted that publications from 2010 onwards exhibit on average a higher density of readership versus citation scores. This indicates that compared to citation scores, RS are more prevalent for recent publications and hence they could work as an early indicator of research impact. These findings highlight the potential and value of Mendeley as a tool for scientometric purposes and particularly as a relevant tool to identify highly cited publications.
  4. Abad-García, M.-F.; González-Teruel, A.; González-Llinares, J.: Effectiveness of OpenAIRE, BASE, Recolecta, and Google Scholar at finding spanish articles in repositories (2018) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 4185) [ClassicSimilarity], result of:
              0.049331643 = score(doc=4185,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 4185, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4185)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper explores the usefulness of OpenAIRE, BASE, Recolecta, and Google Scholar (GS) for evaluating open access (OA) policies that demand a deposit in a repository. A case study was designed focusing on 762 financed articles with a project of FIS-2012 of the Instituto de Salud Carlos III, the Spanish national health service's main management body for health research. Its finance is therefore subject to the Spanish Government OA mandate. A search was carried out for full-text OA copies of the 762 articles using the four tools being evaluated and with identification of the repository housing these items. Of the 762 articles concerned, 510 OA copies were found of 353 unique articles (46.3%) in 68 repositories. OA copies were found of 81.9% of the articles in PubMed Central and copies of 49.5% of the articles in an institutional repository (IR). BASE and GS identified 93.5% of the articles and OpenAIRE 86.7%. Recolecta identified just 62.2% of the articles deposited in a Spanish IR. BASE achieved the greatest success, by locating copies deposited in IR, while GS found those deposited in disciplinary repositories. None of the tools identified copies of all the articles, so they need to be used in a complementary way when evaluating OA policies.
  5. Lawrence, S.: Online or Invisible? (2001) 0.01
    0.0054143956 = product of:
      0.021657582 = sum of:
        0.021657582 = weight(_text_:library in 1063) [ClassicSimilarity], result of:
          0.021657582 = score(doc=1063,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.16433616 = fieldWeight in 1063, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=1063)
      0.25 = coord(1/4)
    
    Content
    The volume of scientific literature typically far exceeds the ability of scientists to identify and utilize all relevant information in their research. Improvements to the accessibility of scientific literature, allowing scientists to locate more relevant research within a given time, have the potential to dramatically improve communication and progress in science. With the web, scientists now have very convenient access to an increasing amount of literature that previously required trips to the library, inter-library loan delays, or substantial effort in locating the source. Evidence shows that usage increases when access is more convenient, and maximizing the usage of the scientific record benefits all of society. Although availability varies greatly by discipline, over a million research articles are freely available on the web. Some journals and conferences provide free access online, others allow authors to post articles on the web, and others allow authors to purchase the right to post their articles on the web. In this article we investigate the impact of free online availability by analyzing citation rates. We do not discuss methods of creating free online availability, such as time-delayed release or publication/membership/conference charges. Online availability of an article may not be expected to greatly improve access and impact by itself. For example, efficient means of locating articles via web search engines or specialized search services is required, and a substantial percentage of the literature needs to be indexed by these search services before it is worthwhile for many scientists to use them. Computer science is a forerunner in web availability -- a substantial percentage of the literature is online and available through search engines such as Google (google.com), or specialized services such as ResearchIndex (researchindex.org). Even so, the greatest impact of the online availability of computer science literature is likely yet to come, because comprehensive search services and more powerful search methods have only become available recently. We analyzed 119,924 conference articles in computer science and related disciplines, obtained from DBLP (dblp.uni-trier.de). In computer science, conference articles are typically formal publications and are often more prestigious than journal articles, with acceptance rates at some conferences below 10%. Citation counts and online availability were estimated using ResearchIndex. The analysis excludes self-citations, where a citation is considered to be a self-citation if one or more of the citing and cited authors match.
  6. Thelwall, M.; Kousha, K.: SlideShare presentations, citations, users, and trends : a professional site with academic and educational uses (2017) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 3766) [ClassicSimilarity], result of:
          0.01914278 = score(doc=3766,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 3766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3766)
      0.25 = coord(1/4)
    
    Abstract
    SlideShare is a free social website that aims to help users distribute and find presentations. Owned by LinkedIn since 2012, it targets a professional audience but may give value to scholarship through creating a long-term record of the content of talks. This article tests this hypothesis by analyzing sets of general and scholarly related SlideShare documents using content and citation analysis and popularity statistics reported on the site. The results suggest that academics, students, and teachers are a minority of SlideShare uploaders, especially since 2010, with most documents not being directly related to scholarship or teaching. About two thirds of uploaded SlideShare documents are presentation slides, with the remainder often being files associated with presentations or video recordings of talks. SlideShare is therefore a presentation-centered site with a predominantly professional user base. Although a minority of the uploaded SlideShare documents are cited by, or cite, academic publications, probably too few articles are cited by SlideShare to consider extracting SlideShare citations for research evaluation. Nevertheless, scholars should consider SlideShare to be a potential source of academic and nonacademic information, particularly in library and information science, education, and business.
  7. Maflahi, N.; Thelwall, M.: How quickly do publications get read? : the evolution of mendeley reader counts for new articles (2018) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 4015) [ClassicSimilarity], result of:
          0.01914278 = score(doc=4015,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 4015, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4015)
      0.25 = coord(1/4)
    
    Abstract
    Within science, citation counts are widely used to estimate research impact but publication delays mean that they are not useful for recent research. This gap can be filled by Mendeley reader counts, which are valuable early impact indicators for academic articles because they appear before citations and correlate strongly with them. Nevertheless, it is not known how Mendeley readership counts accumulate within the year of publication, and so it is unclear how soon they can be used. In response, this paper reports a longitudinal weekly study of the Mendeley readers of articles in 6 library and information science journals from 2016. The results suggest that Mendeley readers accrue from when articles are first available online and continue to steadily build. For journals with large publication delays, articles can already have substantial numbers of readers by their publication date. Thus, Mendeley reader counts may even be useful as early impact indicators for articles before they have been officially published in a journal issue. If field normalized indicators are needed, then these can be generated when journal issues are published using the online first date.
  8. Zhang, Y.: ¬The effect of open access on citation impact : a comparison study based on Web citation analysis (2006) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 5071) [ClassicSimilarity], result of:
          0.01914278 = score(doc=5071,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 5071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5071)
      0.25 = coord(1/4)
    
    Abstract
    The academic impact advantage of Open Access (OA) is a prominent topic of debate in the library and publishing communities. Web citations have been proposed as comparable to, even replacements for, bibliographic citations in assessing the academic impact of journals. In our study, we compare Web citations to articles in an OA journal, the Journal of Computer-Mediated Communication (JCMC), and a traditional access journal, New Media & Society (NMS), in the communication discipline. Web citation counts for JCMC are significantly higher than those for NMS. Furthermore, JCMC receives significantly higher Web citations from the formal scholarly publications posted on the Web than NMS does. The types of Web citations for journal articles were also examined. In the Web context, the impact of a journal can be assessed using more than one type of source: citations from scholarly articles, teaching materials and non-authoritative documents. The OA journal has higher percentages of citations from the third type, which suggests that, in addition to the research community, the impact advantage of open access is also detectable among ordinary users participating in Web-based academic communication. Moreover, our study also proves that the OA journal has impact advantage in developing countries. Compared with NMS, JCMC has more Web citations from developing countries.
  9. Moed, H.F.; Halevi, G.: On full text download and citation distributions in scientific-scholarly journals (2016) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.033953834 = score(doc=2646,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 14:11:17
  10. Ortega, J.L.: ¬The presence of academic journals on Twitter and its relationship with dissemination (tweets) and research impact (citations) (2017) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 4410) [ClassicSimilarity], result of:
              0.033953834 = score(doc=4410,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 4410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4410)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
  11. Costas, R.; Perianes-Rodríguez, A.; Ruiz-Castillo, J.: On the quest for currencies of science : field "exchange rates" for citations and Mendeley readership (2017) 0.00
    0.0033953832 = product of:
      0.013581533 = sum of:
        0.013581533 = product of:
          0.027163066 = sum of:
            0.027163066 = weight(_text_:22 in 4051) [ClassicSimilarity], result of:
              0.027163066 = score(doc=4051,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.15476047 = fieldWeight in 4051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4051)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22