Search (8 results, page 1 of 1)

  • × theme_ss:"Indexierungsstudien"
  • × year_i:[2000 TO 2010}
  1. Taniguchi, S.: Recording evidence in bibliographic records and descriptive metadata (2005) 0.05
    0.04753036 = product of:
      0.09506072 = sum of:
        0.07602732 = weight(_text_:data in 3565) [ClassicSimilarity], result of:
          0.07602732 = score(doc=3565,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.513453 = fieldWeight in 3565, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3565)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 3565) [ClassicSimilarity], result of:
              0.038066804 = score(doc=3565,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 3565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3565)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this article recording evidence for data values in addition to the values themselves in bibliographic records and descriptive metadata is proposed, with the aim of improving the expressiveness and reliability of those records and metadata. Recorded evidence indicates why and how data values are recorded for elements. Recording the history of changes in data values is also proposed, with the aim of reinforcing recorded evidence. First, evidence that can be recorded is categorized into classes: identifiers of rules or tasks, action descriptions of them, and input and output data of them. Dates of recording values and evidence are an additional class. Then, the relative usefulness of evidence classes and also levels (i.e., the record, data element, or data value level) to which an individual evidence class is applied, is examined. Second, examples that can be viewed as recorded evidence in existing bibliographic records and current cataloging rules are shown. Third, some examples of bibliographic records and descriptive metadata with notes of evidence are demonstrated. Fourth, ways of using recorded evidence are addressed.
    Date
    18. 6.2005 13:16:22
  2. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.01
    0.01213214 = product of:
      0.02426428 = sum of:
        0.017919812 = weight(_text_:data in 1858) [ClassicSimilarity], result of:
          0.017919812 = score(doc=1858,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.12102204 = fieldWeight in 1858, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.006344468 = product of:
          0.012688936 = sum of:
            0.012688936 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
              0.012688936 = score(doc=1858,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.07738023 = fieldWeight in 1858, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1858)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Rez. in JASIST 54(2003) no.4, S.356-357 (S.J. Lincicum): "Reliance upon shared cataloging in academic libraries in the United States has been driven largely by the need to reduce the expense of cataloging operations without muck regard for the Impact that this approach might have an the quality of the records included in local catalogs. In recent years, ever increasing pressures have prompted libraries to adopt practices such as "rapid" copy cataloging that purposely reduce the scrutiny applied to bibliographic records downloaded from shared databases, possibly increasing the number of errors that slip through unnoticed. Errors in bibliographic records can lead to serious problems for library catalog users. If the data contained in bibliographic records is inaccurate, users will have difficulty discovering and recognizing resources in a library's collection that are relevant to their needs. Thus, it has become increasingly important to understand the extent and nature of errors that occur in the records found in large shared bibliographic databases, such as OCLC WorldCat, to develop cataloging practices optimized for the shared cataloging environment. Although this monograph raises a few legitimate concerns about recent trends in cataloging practice, it fails to provide the "detailed look" at misinformation in library catalogs arising from linguistic errors and mistakes in subject analysis promised by the publisher. A basic premise advanced throughout the text is that a certain amount of linguistic and subject knowledge is required to catalog library materials effectively. The author emphasizes repeatedly that most catalogers today are asked to catalog an increasingly diverse array of materials, and that they are often required to work in languages or subject areas of which they have little or no knowledge. He argues that the records contributed to shared databases are increasingly being created by catalogers with inadequate linguistic or subject expertise. This adversely affects the quality of individual library catalogs because errors often go uncorrected as records are downloaded from shared databases to local catalogs by copy catalogers who possess even less knowledge. Calling misinformation an "evil phenomenon," Bade states that his main goal is to discuss, "two fundamental types of misinformation found in bibliographic and authority records in library catalogs: that arising from linguistic errors, and that caused by errors in subject analysis, including missing or wrong subject headings" (p. 2). After a superficial discussion of "other" types of errors that can occur in bibliographic records, such as typographical errors and errors in the application of descriptive cataloging rules, Bade begins his discussion of linguistic errors. He asserts that sharing bibliographic records created by catalogers with inadequate linguistic or subject knowledge has, "disastrous effects an the library community" (p. 6). To support this bold assertion, Bade provides as evidence little more than a laundry list of errors that he has personally observed in bibliographic records over the years. When he eventually cites several studies that have addressed the availability and quality of records available for materials in languages other than English, he fails to describe the findings of these studies in any detail, let alone relate the findings to his own observations in a meaningful way. Bade claims that a lack of linguistic expertise among catalogers is the "primary source for linguistic misinformation in our databases" (p. 10), but he neither cites substantive data from existing studies nor provides any new data regarding the overall level of linguistic knowledge among catalogers to support this claim. The section concludes with a brief list of eight sensible, if unoriginal, suggestions for coping with the challenge of cataloging materials in unfamiliar languages.
  3. Hudon, M.: Conceptual compatibility in controlled language tools used to index and access the content of moving image collections (2004) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 2655) [ClassicSimilarity], result of:
          0.031038022 = score(doc=2655,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 2655, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
      0.25 = coord(1/4)
    
    Abstract
    Five controlled vocabularies currently used for content representation in collections of non art moving images were examined to determine their level of conceptual compatibility. Methods borrowed from previous research in the area of indexing language compatibility were used. Quantitative data and qualitative observations allowed us to estimate more precisely and realistically the actual degree of conceptual redundancy in these indexing languages. It was found that the conceptual overlap is high enough to justify the pursuit of research and development work an a common basic indexing and access language that could be used to name objects, events, categories of persons, and relations most frequently depicted in non art moving image collections.
  4. Taghva, K.; Borsack, J.; Nartker, T.; Condit, A.: ¬The role of manually-assigned keywords in query expansion (2004) 0.01
    0.007418666 = product of:
      0.029674664 = sum of:
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 2567) [ClassicSimilarity], result of:
              0.05934933 = score(doc=2567,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 2567, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2567)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 40(2004) no.3, S.441-458
  5. Olson, H.A.; Wolfram, D.: Syntagmatic relationships and indexing consistency on a larger scale (2008) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2214) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2214,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2214, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2214)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this article is to examine interindexer consistency on a larger scale than other studies have done to determine if group consensus is reached by larger numbers of indexers and what, if any, relationships emerge between assigned terms. Design/methodology/approach - In total, 64 MLIS students were recruited to assign up to five terms to a document. The authors applied basic data modeling and the exploratory statistical techniques of multi-dimensional scaling (MDS) and hierarchical cluster analysis to determine whether relationships exist in indexing consistency and the coocurrence of assigned terms. Findings - Consistency in the assignment of indexing terms to a document follows an inverse shape, although it is not strictly power law-based unlike many other social phenomena. The exploratory techniques revealed that groups of terms clustered together. The resulting term cooccurrence relationships were largely syntagmatic. Research limitations/implications - The results are based on the indexing of one article by non-expert indexers and are, thus, not generalizable. Based on the study findings, along with the growing popularity of folksonomies and the apparent authority of communally developed information resources, communally developed indexes based on group consensus may have merit. Originality/value - Consistency in the assignment of indexing terms has been studied primarily on a small scale. Few studies have examined indexing on a larger scale with more than a handful of indexers. Recognition of the differences in indexing assignment has implications for the development of public information systems, especially those that do not use a controlled vocabulary and those tagged by end-users. In such cases, multiple access points that accommodate the different ways that users interpret content are needed so that searchers may be guided to relevant content despite using different terminology.
  6. Neshat, N.; Horri, A.: ¬A study of subject indexing consistency between the National Library of Iran and Humanities Libraries in the area of Iranian studies (2006) 0.01
    0.0055514094 = product of:
      0.022205638 = sum of:
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 230) [ClassicSimilarity], result of:
              0.044411276 = score(doc=230,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    4. 1.2007 10:22:26
  7. Leininger, K.: Interindexer consistency in PsychINFO (2000) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 2552) [ClassicSimilarity], result of:
              0.038066804 = score(doc=2552,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 2552, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2552)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    9. 2.1997 18:44:22
  8. Subrahmanyam, B.: Library of Congress Classification numbers : issues of consistency and their implications for union catalogs (2006) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 5784) [ClassicSimilarity], result of:
              0.03172234 = score(doc=5784,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 5784, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5784)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22