Search (4 results, page 1 of 1)

  • × theme_ss:"Information"
  • × type_ss:"el"
  1. Harnett, K.: Machine learning confronts the elephant in the room : a visual prank exposes an Achilles' heel of computer vision systems: Unlike humans, they can't do a double take (2018) 0.03
    0.027961366 = product of:
      0.11184546 = sum of:
        0.11184546 = weight(_text_:objects in 4449) [ClassicSimilarity], result of:
          0.11184546 = score(doc=4449,freq=4.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.33219194 = fieldWeight in 4449, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.03125 = fieldNorm(doc=4449)
      0.25 = coord(1/4)
    
    Abstract
    In a new study, computer scientists found that artificial intelligence systems fail a vision test a child could accomplish with ease. "It's a clever and important study that reminds us that 'deep learning' isn't really that deep," said Gary Marcus , a neuroscientist at New York University who was not affiliated with the work. The result takes place in the field of computer vision, where artificial intelligence systems attempt to detect and categorize objects. They might try to find all the pedestrians in a street scene, or just distinguish a bird from a bicycle (which is a notoriously difficult task). The stakes are high: As computers take over critical tasks like automated surveillance and autonomous driving, we'll want their visual processing to be at least as good as the human eyes they're replacing. It won't be easy. The new work accentuates the sophistication of human vision - and the challenge of building systems that mimic it. In the study, the researchers presented a computer vision system with a living room scene. The system processed it well. It correctly identified a chair, a person, books on a shelf. Then the researchers introduced an anomalous object into the scene - an image of elephant. The elephant's mere presence caused the system to forget itself: Suddenly it started calling a chair a couch and the elephant a chair, while turning completely blind to other objects it had previously seen. Researchers are still trying to understand exactly why computer vision systems get tripped up so easily, but they have a good guess. It has to do with an ability humans have that AI lacks: the ability to understand when a scene is confusing and thus go back for a second glance.
  2. Crane, G.; Jones, A.: Text, information, knowledge and the evolving record of humanity (2006) 0.02
    0.017475853 = product of:
      0.06990341 = sum of:
        0.06990341 = weight(_text_:objects in 1182) [ClassicSimilarity], result of:
          0.06990341 = score(doc=1182,freq=4.0), product of:
            0.33668926 = queryWeight, product of:
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.06334615 = queryNorm
            0.20761997 = fieldWeight in 1182, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.315071 = idf(docFreq=590, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1182)
      0.25 = coord(1/4)
    
    Abstract
    Although the Alexandria Digital Library provides far richer data than the TGN (5.9 vs. 1.3 million names), its added size lowers, rather than increases, the accuracy of most geographic name identification systems for historical documents: most of the extra 4.6 million names cover low frequency entities that rarely occur in any particular corpus. The TGN is sufficiently comprehensive to provide quite enough noise: we find place names that are used over and over (there are almost one hundred Washingtons) and semantically ambiguous (e.g., is Washington a person or a place?). Comprehensive knowledge sources emphasize recall but lower precision. We need data with which to determine which "Tribune" or "John Brown" a particular passage denotes. Secondly and paradoxically, our reference works may not be comprehensive enough. Human actors come and go over time. Organizations appear and vanish. Even places can change their names or vanish. The TGN does associate the obsolete name Siam with the nation of Thailand (tgn,1000142) - but also with towns named Siam in Iowa (tgn,2035651), Tennessee (tgn,2101519), and Ohio (tgn,2662003). Prussia appears but as a general region (tgn,7016786), with no indication when or if it was a sovereign nation. And if places do point to the same object over time, that object may have very different significance over time: in the foundational works of Western historiography, Herodotus reminds us that the great cities of the past may be small today, and the small cities of today great tomorrow (Hdt. 1.5), while Thucydides stresses that we cannot estimate the past significance of a place by its appearance today (Thuc. 1.10). In other words, we need to know the population figures for the various Washingtons in 1870 if we are analyzing documents from 1870. The foundations have been laid for reference works that provide machine actionable information about entities at particular times in history. The Alexandria Digital Library Gazetteer Content Standard8 represents a sophisticated framework with which to create such resources: places can be associated with temporal information about their foundation (e.g., Washington, DC, founded on 16 July 1790), changes in names for the same location (e.g., Saint Petersburg to Leningrad and back again), population figures at various times and similar historically contingent data. But if we have the software and the data structures, we do not yet have substantial amounts of historical content such as plentiful digital gazetteers, encyclopedias, lexica, grammars and other reference works to illustrate many periods and, even if we do, those resources may not be in a useful form: raw OCR output of a complex lexicon or gazetteer may have so many errors and have captured so little of the underlying structure that the digital resource is useless as a knowledge base. Put another way, human beings are still much better at reading and interpreting the contents of page images than machines. While people, places, and dates are probably the most important core entities, we will find a growing set of objects that we need to identify and track across collections, and each of these categories of objects will require its own knowledge sources. The following section enumerates and briefly describes some existing categories of documents that we need to mine for knowledge. This brief survey focuses on the format of print sources (e.g., highly structured textual "database" vs. unstructured text) to illustrate some of the challenges involved in converting our published knowledge into semantically annotated, machine actionable form.
  3. Atran, S.; Medin, D.L.; Ross, N.: Evolution and devolution of knowledge : a tale of two biologies (2004) 0.01
    0.012873792 = product of:
      0.05149517 = sum of:
        0.05149517 = weight(_text_:22 in 479) [ClassicSimilarity], result of:
          0.05149517 = score(doc=479,freq=2.0), product of:
            0.22182742 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06334615 = queryNorm
            0.23214069 = fieldWeight in 479, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=479)
      0.25 = coord(1/4)
    
    Date
    23. 1.2022 10:22:18
  4. Freyberg, L.: ¬Die Lesbarkeit der Welt : Rezension zu 'The Concept of Information in Library and Information Science. A Field in Search of Its Boundaries: 8 Short Comments Concerning Information'. In: Cybernetics and Human Knowing. Vol. 22 (2015), 1, 57-80. Kurzartikel von Luciano Floridi, Søren Brier, Torkild Thellefsen, Martin Thellefsen, Bent Sørensen, Birger Hjørland, Brenda Dervin, Ken Herold, Per Hasle und Michael Buckland (2016) 0.01
    0.008582529 = product of:
      0.034330115 = sum of:
        0.034330115 = weight(_text_:22 in 3335) [ClassicSimilarity], result of:
          0.034330115 = score(doc=3335,freq=2.0), product of:
            0.22182742 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06334615 = queryNorm
            0.15476047 = fieldWeight in 3335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=3335)
      0.25 = coord(1/4)
    

Authors

Languages