Search (5 results, page 1 of 1)

  • × theme_ss:"Information Gateway"
  • × type_ss:"el"
  1. Brahms, E.: Digital library initiatives of the Deutsche Forschungsgemeinschaft (2001) 0.03
    0.02593536 = product of:
      0.10374144 = sum of:
        0.10374144 = weight(_text_:fields in 1190) [ClassicSimilarity], result of:
          0.10374144 = score(doc=1190,freq=2.0), product of:
            0.31604284 = queryWeight, product of:
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.06382575 = queryNorm
            0.32825118 = fieldWeight in 1190, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.046875 = fieldNorm(doc=1190)
      0.25 = coord(1/4)
    
    Abstract
    The Deutsche Forschungsgemeinschaft (DFG) is the central public funding organization for academic research in Germany. It is thus comparable to a research council or a national research foundation. According to its statutes, DFG's mandate is to serve science and the arts in all fields by supporting research projects carried out at universities and public research institutions in Germany, to promote cooperation between researchers, and to forge and support links between German academic science, industry and partners in foreign countries. In the fulfillment of its tasks, the DFG pays special attention to the education and support of young scientists and scholars. DFG's mandate and operations follow the principle of territoriality. This means that its funding activities are restricted, with very few exceptions, to individuals and institutions with permanent addresses in Germany. Fellowships are granted for work in other countries, but most fellowship programs are restricted to German citizens, with a few exceptions for permanent residents of Germany holding foreign passports.
  2. Oard, D.W.: Serving users in many languages : cross-language information retrieval for digital libraries (1997) 0.02
    0.0216128 = product of:
      0.0864512 = sum of:
        0.0864512 = weight(_text_:fields in 1261) [ClassicSimilarity], result of:
          0.0864512 = score(doc=1261,freq=2.0), product of:
            0.31604284 = queryWeight, product of:
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.06382575 = queryNorm
            0.27354267 = fieldWeight in 1261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1261)
      0.25 = coord(1/4)
    
    Abstract
    We are rapidly constructing an extensive network infrastructure for moving information across national boundaries, but much remains to be done before linguistic barriers can be surmounted as effectively as geographic ones. Users seeking information from a digital library could benefit from the ability to query large collections once using a single language, even when more than one language is present in the collection. If the information they locate is not available in a language that they can read, some form of translation will be needed. At present, multilingual thesauri such as EUROVOC help to address this challenge by facilitating controlled vocabulary search using terms from several languages, and services such as INSPEC produce English abstracts for documents in other languages. On the other hand, support for free text searching across languages is not yet widely deployed, and fully automatic machine translation is presently neither sufficiently fast nor sufficiently accurate to adequately support interactive cross-language information seeking. An active and rapidly growing research community has coalesced around these and other related issues, applying techniques drawn from several fields - notably information retrieval and natural language processing - to provide access to large multilingual collections.
  3. Urs, S.R.; Angrosh, M.A.: Ontology-based knowledge organization systems in digital libraries : a comparison of experiments in OWL and KAON ontologies (2006 (?)) 0.02
    0.01729024 = product of:
      0.06916096 = sum of:
        0.06916096 = weight(_text_:fields in 2799) [ClassicSimilarity], result of:
          0.06916096 = score(doc=2799,freq=2.0), product of:
            0.31604284 = queryWeight, product of:
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.06382575 = queryNorm
            0.21883413 = fieldWeight in 2799, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.951651 = idf(docFreq=849, maxDocs=44218)
              0.03125 = fieldNorm(doc=2799)
      0.25 = coord(1/4)
    
    Abstract
    Grounded on a strong belief that ontologies enhance the performance of information retrieval systems, there has been an upsurge of interest in ontologies. Its importance is identified in diverse research fields such as knowledge engineering, knowledge representation, qualitative modeling, language engineering, database design, information integration, object-oriented analysis, information retrieval and extraction, knowledge management and agent-based systems design (Guarino, 1998). While the role-played by ontologies, automatically lends a place of legitimacy for these tools, research in this area gains greater significance in the wake of various challenges faced in the contemporary digital environment. With the objective of overcoming various pitfalls associated with current search mechanisms, ontologies are increasingly used for developing efficient information retrieval systems. An indicator of research interest in the area of ontology is the Swoogle, a search engine for Semantic Web documents, terms and data found on the Web (Ding, Li et al, 2004). Given the complex nature of the digital content archived in digital libraries, ontologies can be employed for designing efficient forms of information retrieval in digital libraries. Knowledge representation assumes greater significance due to its crucial role in ontology development. These systems aid in developing intelligent information systems, wherein the notion of intelligence implies the ability of the system to find implicit consequences of its explicitly represented knowledge (Baader and Nutt, 2003). Knowledge representation formalisms such as 'Description Logics' are used to obtain explicit knowledge representation of the subject domain. These representations are developed into ontologies, which are used for developing intelligent information systems. Against this backdrop, the paper examines the use of Description Logics for conceptually modeling a chosen domain, which would be utilized for developing domain ontologies. The knowledge representation languages identified for this purpose are Web Ontology Language (OWL) and KArlsruhe ONtology (KAON) language. Drawing upon the various technical constructs in developing ontology-based information systems, the paper explains the working of the prototypes and also presents a comparative study of the two prototypes.
  4. Place, E.: Internationale Zusammenarbeit bei Internet Subject Gateways (1999) 0.01
    0.0129712615 = product of:
      0.051885046 = sum of:
        0.051885046 = weight(_text_:22 in 4189) [ClassicSimilarity], result of:
          0.051885046 = score(doc=4189,freq=2.0), product of:
            0.2235069 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06382575 = queryNorm
            0.23214069 = fieldWeight in 4189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=4189)
      0.25 = coord(1/4)
    
    Date
    22. 6.2002 19:35:09
  5. Blosser, J.; Michaelson, R.; Routh. R.; Xia, P.: Defining the landscape of Web resources : Concluding Report of the BAER Web Resources Sub-Group (2000) 0.01
    0.008647508 = product of:
      0.034590032 = sum of:
        0.034590032 = weight(_text_:22 in 1447) [ClassicSimilarity], result of:
          0.034590032 = score(doc=1447,freq=2.0), product of:
            0.2235069 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.06382575 = queryNorm
            0.15476047 = fieldWeight in 1447, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=1447)
      0.25 = coord(1/4)
    
    Date
    21. 4.2002 10:22:31