Search (61 results, page 2 of 4)

  • × theme_ss:"Informetrie"
  • × theme_ss:"Internet"
  1. Teplitskiy, M.; Lu, G.; Duede, E.: Amplifying the impact of open access : Wikipedia and the diffusion of science (2017) 0.00
    0.00296799 = product of:
      0.00890397 = sum of:
        0.00890397 = weight(_text_:a in 3782) [ClassicSimilarity], result of:
          0.00890397 = score(doc=3782,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1709182 = fieldWeight in 3782, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3782)
      0.33333334 = coord(1/3)
    
    Abstract
    With the rise of Wikipedia as a first-stop source for scientific information, it is important to understand whether Wikipedia draws upon the research that scientists value most. Here we identify the 250 most heavily used journals in each of 26 research fields (4,721 journals, 19.4M articles) indexed by the Scopus database, and test whether topic, academic status, and accessibility make articles from these journals more or less likely to be referenced on Wikipedia. We find that a journal's academic status (impact factor) and accessibility (open access policy) both strongly increase the probability of it being referenced on Wikipedia. Controlling for field and impact factor, the odds that an open access journal is referenced on the English Wikipedia are 47% higher compared to paywall journals. These findings provide evidence is that a major consequence of open access policies is to significantly amplify the diffusion of science, through an intermediary like Wikipedia, to a broad audience.
    Type
    a
  2. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.00
    0.0029264777 = product of:
      0.008779433 = sum of:
        0.008779433 = weight(_text_:a in 4533) [ClassicSimilarity], result of:
          0.008779433 = score(doc=4533,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1685276 = fieldWeight in 4533, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
    Type
    a
  3. Bucy, E.P.; Lang, A.; Potter, R.F.; Grabe, M.E.: Formal features of cyberspace : relationships between Web page complexity and site traffic (1999) 0.00
    0.0027093915 = product of:
      0.008128175 = sum of:
        0.008128175 = weight(_text_:a in 4060) [ClassicSimilarity], result of:
          0.008128175 = score(doc=4060,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15602624 = fieldWeight in 4060, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4060)
      0.33333334 = coord(1/3)
    
    Abstract
    Although the Internet is not without its critics, many popular and academic writers are particular effusive in the praise of the WWW's interactive features. A content analysis of the formal features of 496 Web sites, drawn randomly from a sample of the top 5.000 most visited sites determined by 100hot.com, was performed to explore whether the capabilities of the WWW are being exploited by Web page designers to the extent that the literature suggests they are. Specifically, the study examines the differences between the formal features of commercial versus non-commercial sites as well as the relationship between Web page complexity and the amount of traffic a site receives. Findings indicate that, although most pages in this stage of the Web's development remain technological simple and noninteractive, there are significant relationships between site traffic and home-page structure for Web sites in the commercial (.com) as well as educational (.edu) domains. As the Web continues to expand and the amount of information redundancy increases, it is argued that a site's information packaging will become increasingly important in gaining users' attention and interest
    Type
    a
  4. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.00
    0.0027093915 = product of:
      0.008128175 = sum of:
        0.008128175 = weight(_text_:a in 978) [ClassicSimilarity], result of:
          0.008128175 = score(doc=978,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15602624 = fieldWeight in 978, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=978)
      0.33333334 = coord(1/3)
    
    Abstract
    All known previous Web link studies have used the Web page as the primary indivisible source document for counting purposes. Arguments are presented to explain why this is not necessarily optimal and why other alternatives have the potential to produce better results. This is despite the fact that individual Web files are often the only choice if search engines are used for raw data and are the easiest basic Web unit to identify. The central issue is of defining the Web "document": that which should comprise the single indissoluble unit of coherent material. Three alternative heuristics are defined for the educational arena based upon the directory, the domain and the whole university site. These are then compared by implementing them an a set of 108 UK university institutional Web sites under the assumption that a more effective heuristic will tend to produce results that correlate more highly with institutional research productivity. It was discovered that the domain and directory models were able to successfully reduce the impact of anomalous linking behavior between pairs of Web sites, with the latter being the method of choice. Reasons are then given as to why a document model an its own cannot eliminate all anomalies in Web linking behavior. Finally, the results from all models give a clear confirmation of the very strong association between the research productivity of a UK university and the number of incoming links from its peers' Web sites.
    Type
    a
  5. Zhang, L.; Gou, Z.; Fang, Z.; Sivertsen, G.; Huang, Y.: Who tweets scientific publications? : a large-scale study of tweeting audiences in all areas of research (2023) 0.00
    0.0027093915 = product of:
      0.008128175 = sum of:
        0.008128175 = weight(_text_:a in 1189) [ClassicSimilarity], result of:
          0.008128175 = score(doc=1189,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15602624 = fieldWeight in 1189, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1189)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of this study is to investigate the validity of tweets about scientific publications as an indicator of societal impact by measuring the degree to which the publications are tweeted beyond academia. We introduce methods that allow for using a much larger and broader data set than in previous validation studies. It covers all areas of research and includes almost 40 million tweets by 2.5 million unique tweeters mentioning almost 4 million scientific publications. We find that, although half of the tweeters are external to academia, most of the tweets are from within academia, and most of the external tweets are responses to original tweets within academia. Only half of the tweeted publications are tweeted outside of academia. We conclude that, in general, the tweeting of scientific publications is not a valid indicator of the societal impact of research. However, publications that continue being tweeted after a few days represent recent scientific achievements that catch attention in society. These publications occur more often in the health sciences and in the social sciences and humanities.
    Content
    Beitrag in: JASIST special issue on 'Who tweets scientific publications? A large-scale study of tweeting audiences in all areas of research'. Vgl.: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24830.
    Type
    a
  6. Almind, T.C.; Ingwersen, P.: Informetric analyses on the World Wide Web : methodological approaches to 'Webometrics' (1997) 0.00
    0.002682161 = product of:
      0.008046483 = sum of:
        0.008046483 = weight(_text_:a in 4711) [ClassicSimilarity], result of:
          0.008046483 = score(doc=4711,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1544581 = fieldWeight in 4711, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4711)
      0.33333334 = coord(1/3)
    
    Abstract
    Introduces the application of informetric methods to the WWW, called Webometrics. A case study, in which the Danish proportion of the WWW is compared to those of other Nordic countries, presents a workable methods for general informetrc analyses of the WWW. The methodological approach is comparable with common bibliometric analyses of the ISI databases. Among other results the analyses demonstrate that Denmark would seem to fail seriously behind the other Nordic countries with respect to visibility on the Net and compared to its position in scientific databases
    Type
    a
  7. Bar-Ilan, J.: ¬The Web as an information source on informetrics? : A content analysis (2000) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 4587) [ClassicSimilarity], result of:
          0.007963953 = score(doc=4587,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 4587, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4587)
      0.33333334 = coord(1/3)
    
    Abstract
    This article addresses the question of whether the Web can serve as an information source for research. Specifically, it analyzes by way of content analysis the Web pages retrieved by the major search engines on a particular date (June 7, 1998), as a result of the query 'informetrics OR informetric'. In 807 out of the 942 retrieved pages, the search terms were mentioned in the context of information science. Over 70% of the pages contained only indirect information on the topic, in the form of hypertext links and bibliographical references without annotation. The bibliographical references extracted from the Web pages were analyzed, and lists of most productive authors, most cited authors, works, and sources were compiled. The list of reference obtained from the Web was also compared to data retrieved from commercial databases. For most cases, the list of references extracted from the Web outperformed the commercial, bibliographic databases. The results of these comparisons indicate that valuable, freely available data is hidden in the Web waiting to be extracted from the millions of Web pages
    Type
    a
  8. Davis, P.M.; Cohen, S.A.: ¬The effect of the Web on undergraduate citation behavior 1996-1999 (2001) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 5768) [ClassicSimilarity], result of:
          0.007963953 = score(doc=5768,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 5768, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5768)
      0.33333334 = coord(1/3)
    
    Abstract
    A citation analysis of undergraduate term papers in microeconomics revealed a significant decrease in the frequency of scholarly resources cited between 1996 and 1999. Book citations decreased from 30% to 19%, newspaper citations increased from 7% to 19%, and Web citations increased from 9% to 21%. Web citations checked in 2000 revealed that only 18% of URLs cited in 1996 led to the correct Internet document. For 1999 bibliographies, only 55% of URLs led to the correct document. The authors recommend (1) setting stricter guidelines for acceptable citations in course assignments; (2) creating and maintaining scholarly portals for authoritative Web sites with a commitment to long-term access; and (3) continuing to instruct students how to critically evaluate resources
    Type
    a
  9. Barnett, G.A.; Fink, E.L.: Impact of the internet and scholar age distribution on academic citation age (2008) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 1376) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1376,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1376, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1376)
      0.33333334 = coord(1/3)
    
    Abstract
    This article examines the impact of the Internet and the age distribution of research scholars on academic citation age with a mathematical model proposed by Barnett, Fink, and Debus (1989) and a revised model that incorporates information about the online environment and scholar age distribution. The modified model fits the data well, accounting for 99.6% of the variance for science citations and 99.8% for social science citations. The Internet's impact on the aging process of academic citations has been very small, accounting for only 0.1% for the social sciences and 0.8% for the sciences. Rather than resulting in the use of more recent citations, the Internet appears to have lengthened the average life of academic citations by 6 to 8 months. The aging of scholars seems to have a greater impact, accounting for 2.8% of the variance for the sciences and 0.9% for the social sciences. However, because the diffusion of the Internet and the aging of the professoriate are correlated over this time period, differentiating their effects is somewhat problematic.
    Type
    a
  10. Thelwall, M.: Webometrics (2009) 0.00
    0.002654651 = product of:
      0.007963953 = sum of:
        0.007963953 = weight(_text_:a in 3906) [ClassicSimilarity], result of:
          0.007963953 = score(doc=3906,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 3906, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3906)
      0.33333334 = coord(1/3)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
    Type
    a
  11. Stuart, D.: Web metrics for library and information professionals (2014) 0.00
    0.0025679735 = product of:
      0.0077039204 = sum of:
        0.0077039204 = weight(_text_:a in 2274) [ClassicSimilarity], result of:
          0.0077039204 = score(doc=2274,freq=22.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14788237 = fieldWeight in 2274, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
      0.33333334 = coord(1/3)
    
    Abstract
    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional. The book will provide a practical introduction to web metrics for a wide range of library and information professionals, from the bibliometrician wanting to demonstrate the wider impact of a researcher's work than can be demonstrated through traditional citations databases, to the reference librarian wanting to measure how successfully they are engaging with their users on Twitter. It will be a valuable tool for anyone who wants to not only understand the impact of content, but demonstrate this impact to others within the organization and beyond.
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.
  12. Kaminer, N.; Braunstein, Y.M.: Bibliometric analysis of the impact of Internet use on scholarly productivity (1998) 0.00
    0.0025028288 = product of:
      0.0075084865 = sum of:
        0.0075084865 = weight(_text_:a in 1151) [ClassicSimilarity], result of:
          0.0075084865 = score(doc=1151,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14413087 = fieldWeight in 1151, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1151)
      0.33333334 = coord(1/3)
    
    Abstract
    Variables measuring the nature and level of Internet usage by natural scientists improve the explanatory power of a traditional bibliographic model of scholarly productivity. The data used to construct these variables come from log files generated by the internal accounting modules of the UNIX operating system. The effects of Internet usage on productivity are quntifiable, and it is possible to calculate tradeoffs between Internet usage and the more traditional inputs
    Type
    a
  13. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 1236) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=1236,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 1236, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
      0.33333334 = coord(1/3)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
    Type
    a
  14. Raan, A.F.J. van; Noyons, E.C.M.: Discovery of patterns of scientific and technological development and knowledge transfer (2002) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 3603) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=3603,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 3603, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper addresses a bibliometric methodology to discover the structure of the scientific 'landscape' in order to gain detailed insight into the development of MD fields, their interaction, and the transfer of knowledge between them. This methodology is appropriate to visualize the position of MD activities in relation to interdisciplinary MD developments, and particularly in relation to socio-economic problems. Furthermore, it allows the identification of the major actors. It even provides the possibility of foresight. We describe a first approach to apply bibliometric mapping as an instrument to investigate characteristics of knowledge transfer. In this paper we discuss the creation of 'maps of science' with help of advanced bibliometric methods. This 'bibliometric cartography' can be seen as a specific type of data-mining, applied to large amounts of scientific publications. As an example we describe the mapping of the field neuroscience, one of the largest and fast growing fields in the life sciences. The number of publications covered by this database is about 80,000 per year, the period covered is 1995-1998. Current research is going an to update the mapping for the years 1999-2002. This paper addresses the main lines of the methodology and its application in the study of knowledge transfer.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
    Type
    a
  15. Vaughan, L.; Shaw, D.: Web citation data for impact assessment : a comparison of four science disciplines (2005) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 3880) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=3880,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 3880, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3880)
      0.33333334 = coord(1/3)
    
    Abstract
    The number and type of Web citations to journal articles in four areas of science are examined: biology, genetics, medicine, and multidisciplinary sciences. For a sample of 5,972 articles published in 114 journals, the median Web citation counts per journal article range from 6.2 in medicine to 10.4 in genetics. About 30% of Web citations in each area indicate intellectual impact (citations from articles or class readings, in contrast to citations from bibliographic services or the author's or journal's home page). Journals receiving more Web citations also have higher percentages of citations indicating intellectual impact. There is significant correlation between the number of citations reported in the databases from the Institute for Scientific Information (ISI, now Thomson Scientific) and the number of citations retrieved using the Google search engine (Web citations). The correlation is much weaker for journals published outside the United Kingdom or United States and for multidisciplinary journals. Web citation numbers are higher than ISI citation counts, suggesting that Web searches might be conducted for an earlier or a more fine-grained assessment of an article's impact. The Web-evident impact of non-UK/USA publications might provide a balance to the geographic or cultural biases observed in ISI's data, although the stability of Web citation counts is debatable.
    Type
    a
  16. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 4279) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=4279,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 4279, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.33333334 = coord(1/3)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
    Type
    a
  17. Thelwall, M.: Results from a web impact factor crawler (2001) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 4490) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=4490,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 4490, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4490)
      0.33333334 = coord(1/3)
    
    Abstract
    Web impact factors, the proposed web equivalent of impact factors for journals, can be calculated by using search engines. It has been found that the results are problematic because of the variable coverage of search engines as well as their ability to give significantly different results over short periods of time. The fundamental problem is that although some search engines provide a functionality that is capable of being used for impact calculations, this is not their primary task and therefore they do not give guarantees as to performance in this respect. In this paper, a bespoke web crawler designed specifically for the calculation of reliable WIFs is presented. This crawler was used to calculate WIFs for a number of UK universities, and the results of these calculations are discussed. The principal findings were that with certain restrictions, WIFs can be calculated reliably, but do not correlate with accepted research rankings owing to the variety of material hosted on university servers. Changes to the calculations to improve the fit of the results to research rankings are proposed, but there are still inherent problems undermining the reliability of the calculation. These problems still apply if the WIF scores are taken on their own as indicators of the general impact of any area of the Internet, but with care would not apply to online journals.
    Type
    a
  18. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 5176) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=5176,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 5176, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5176)
      0.33333334 = coord(1/3)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
    Type
    a
  19. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 4626) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=4626,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 4626, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.33333334 = coord(1/3)
    
    Abstract
    The primary webometric method for estimating the online impact of an organization is to count links to its website. Link counts have been available from commercial search engines for over a decade but this was set to end by early 2012 and so a replacement is needed. This article compares link counts to two alternative methods: URL citations and organization title mentions. New variations of these methods are also introduced. The three methods are compared against each other using Yahoo!. Two of the three methods (URL citations and organization title mentions) are also compared against each other using Bing. Evidence from a case study of 131 UK universities and 49 US Library and Information Science (LIS) departments suggests that Bing's Hit Count Estimates (HCEs) for popular title searches are not useful for webometric research but that Yahoo!'s HCEs for all three types of search and Bing's URL citation HCEs seem to be consistent. For exact URL counts the results of all three methods in Yahoo! and both methods in Bing are also consistent. Four types of accuracy factors are also introduced and defined: search engine coverage, search engine retrieval variation, search engine retrieval anomalies, and query polysemy.
    Type
    a
  20. Koehler, W.: Web page change and persistence : a four-year longitudinal study (2002) 0.00
    0.0022989952 = product of:
      0.006896985 = sum of:
        0.006896985 = weight(_text_:a in 203) [ClassicSimilarity], result of:
          0.006896985 = score(doc=203,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13239266 = fieldWeight in 203, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=203)
      0.33333334 = coord(1/3)
    
    Abstract
    Changes in the topography of the Web can be expressed in at least four ways: (1) more sites on more servers in more places, (2) more pages and objects added to existing sites and pages, (3) changes in traffic, and (4) modifications to existing text, graphic, and other Web objects. This article does not address the first three factors (more sites, more pages, more traffic) in the growth of the Web. It focuses instead on changes to an existing set of Web documents. The article documents changes to an aging set of Web pages, first identified and "collected" in December 1996 and followed weekly thereafter. Results are reported through February 2001. The article addresses two related phenomena: (1) the life cycle of Web objects, and (2) changes to Web objects. These data reaffirm that the half-life of a Web page is approximately 2 years. There is variation among Web pages by top-level domain and by page type (navigation, content). Web page content appears to stabilize over time; aging pages change less often than once they did
    Type
    a

Years

Languages

  • e 57
  • d 4
  • More… Less…

Types

  • a 60
  • m 1
  • More… Less…