Search (206 results, page 2 of 11)

  • × theme_ss:"Informetrie"
  • × year_i:[2000 TO 2010}
  1. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.03
    0.028165242 = product of:
      0.08449572 = sum of:
        0.074835055 = weight(_text_:web in 1236) [ClassicSimilarity], result of:
          0.074835055 = score(doc=1236,freq=18.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5408555 = fieldWeight in 1236, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
        0.009660665 = product of:
          0.028981995 = sum of:
            0.028981995 = weight(_text_:29 in 1236) [ClassicSimilarity], result of:
              0.028981995 = score(doc=1236,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.19432661 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1236)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.1, S.29-38
  2. Mayr, P.; Tosques, F.: Webometrische Analysen mit Hilfe der Google Web APIs (2005) 0.02
    0.02467113 = product of:
      0.07401339 = sum of:
        0.060488462 = weight(_text_:web in 3189) [ClassicSimilarity], result of:
          0.060488462 = score(doc=3189,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43716836 = fieldWeight in 3189, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3189)
        0.01352493 = product of:
          0.04057479 = sum of:
            0.04057479 = weight(_text_:29 in 3189) [ClassicSimilarity], result of:
              0.04057479 = score(doc=3189,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.27205724 = fieldWeight in 3189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3189)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Der Report stellt die Möglichkeiten und Einschränkungen der Google Web APIs (Google API) dar. Die Implementierung der Google API anhand einzelner informationswissenschaftlicher Untersuchungen aus der Webometrie ergibt, dass die Google API mit Einschränkungen für internetbezogene Untersuchungen eingesetzt werden können. Vergleiche der Trefferergebnisse über die beiden Google-Schnittstellen Google API und die Standard Weboberfläche Google.com (Google Web) zeigen Unterschiede bezüglich der Reichweite, der Zusammensetzung und Verfügbarkeit. Die Untersuchung basiert auf einfachen und erweiterten Suchanfragen in den Sprachen Deutsch und Englisch. Die analysierten Treffermengen der Google API bestätigen tendenziell frühere Internet-Studien.
    Date
    12. 2.2005 18:29:36
  3. Pernik, V.; Schlögl, C.: Möglichkeiten und Grenzen von Web Structure Mining am Beispiel von informationswissenschaftlichen Hochschulinstituten im deutschsprachigen Raum (2006) 0.02
    0.023967069 = product of:
      0.0719012 = sum of:
        0.05644414 = weight(_text_:web in 78) [ClassicSimilarity], result of:
          0.05644414 = score(doc=78,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.4079388 = fieldWeight in 78, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=78)
        0.015457064 = product of:
          0.04637119 = sum of:
            0.04637119 = weight(_text_:29 in 78) [ClassicSimilarity], result of:
              0.04637119 = score(doc=78,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.31092256 = fieldWeight in 78, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=78)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    In diesem Beitrag wird eine webometrische Untersuchung vorgestellt, die informationswissenschaftliche Hochschulinstitute in den deutschsprachigen Ländern zum Gegenstand hatte. Ziel dieser Studie war es, einerseits die Linkbeziehungen zwischen den Hochschulinstituten zu analysieren. Andererseits sollten Ähnlichkeiten (zum Beispiel aufgrund von fachlichen, örtlichen oder institutionellen Gegebenheiten) identifiziert werden. Es werden nicht nur die Vorgehensweise bei derartigen Analysen und die daraus resultierenden Ergebnisse dargestellt. Insbesondere sollen Problembereiche und Einschränkungen, die mit der Analyse von Linkstrukturen im Web verbunden sind, thematisiert werden.
    Date
    4.12.2006 12:14:29
  4. Davis, P.M.; Cohen, S.A.: ¬The effect of the Web on undergraduate citation behavior 1996-1999 (2001) 0.02
    0.023820281 = product of:
      0.07146084 = sum of:
        0.059868045 = weight(_text_:web in 5768) [ClassicSimilarity], result of:
          0.059868045 = score(doc=5768,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 5768, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5768)
        0.011592798 = product of:
          0.034778394 = sum of:
            0.034778394 = weight(_text_:29 in 5768) [ClassicSimilarity], result of:
              0.034778394 = score(doc=5768,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.23319192 = fieldWeight in 5768, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5768)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    A citation analysis of undergraduate term papers in microeconomics revealed a significant decrease in the frequency of scholarly resources cited between 1996 and 1999. Book citations decreased from 30% to 19%, newspaper citations increased from 7% to 19%, and Web citations increased from 9% to 21%. Web citations checked in 2000 revealed that only 18% of URLs cited in 1996 led to the correct Internet document. For 1999 bibliographies, only 55% of URLs led to the correct document. The authors recommend (1) setting stricter guidelines for acceptable citations in course assignments; (2) creating and maintaining scholarly portals for authoritative Web sites with a commitment to long-term access; and (3) continuing to instruct students how to critically evaluate resources
    Date
    29. 9.2001 14:01:09
  5. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.02
    0.023776896 = product of:
      0.07133069 = sum of:
        0.060488462 = weight(_text_:web in 1065) [ClassicSimilarity], result of:
          0.060488462 = score(doc=1065,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43716836 = fieldWeight in 1065, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
        0.010842225 = product of:
          0.032526672 = sum of:
            0.032526672 = weight(_text_:system in 1065) [ClassicSimilarity], result of:
              0.032526672 = score(doc=1065,freq=2.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.2435858 = fieldWeight in 1065, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  6. Zuccala, A.: Author cocitation analysis is to intellectual structure as Web colink analysis is to ... ? (2006) 0.02
    0.023773644 = product of:
      0.07132093 = sum of:
        0.04989004 = weight(_text_:web in 6008) [ClassicSimilarity], result of:
          0.04989004 = score(doc=6008,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.36057037 = fieldWeight in 6008, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6008)
        0.02143089 = weight(_text_:retrieval in 6008) [ClassicSimilarity], result of:
          0.02143089 = score(doc=6008,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.16710453 = fieldWeight in 6008, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6008)
      0.33333334 = coord(2/6)
    
    Abstract
    Author Cocitation Analysis (ACA) and Web Colink Analysis (WCA) are examined as sister techniques in the related fields of bibliometrics and webometrics. Comparisons are made between the two techniques based on their data retrieval, mapping, and interpretation procedures, using mathematics as the subject in focus. An ACA is carried out and interpreted for a group of participants (authors) involved in an Isaac Newton Institute (2000) workshop-Singularity Theory and Its Applications to Wave Propagation Theory and Dynamical Systems-and compared/contrasted with a WCA for a list of international mathematics research institute home pages on the Web. Although the practice of ACA may be used to inform a WCA, the two techniques do not share many elements in common. The most important departure between ACA and WCA exists at the interpretive stage when ACA maps become meaningful in light of citation theory, and WCA maps require interpretation based on hyperlink theory. Much of the research concerning link theory and motivations for linking is still new; therefore further studies based on colinking are needed, mainly map-based studies, to understand what makes a Web colink structure meaningful.
  7. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.022379868 = product of:
      0.044759735 = sum of:
        0.019956015 = weight(_text_:web in 5171) [ClassicSimilarity], result of:
          0.019956015 = score(doc=5171,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.14422815 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.017144712 = weight(_text_:retrieval in 5171) [ClassicSimilarity], result of:
          0.017144712 = score(doc=5171,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.13368362 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.0076590087 = product of:
          0.022977026 = sum of:
            0.022977026 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.022977026 = score(doc=5171,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.33333334 = coord(1/3)
      0.5 = coord(3/6)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  8. Zhao, D.; Strotmann, A.: Can citation analysis of Web publications better detect research fronts? (2007) 0.02
    0.021174401 = product of:
      0.0635232 = sum of:
        0.05577876 = weight(_text_:web in 471) [ClassicSimilarity], result of:
          0.05577876 = score(doc=471,freq=10.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.40312994 = fieldWeight in 471, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
        0.007744446 = product of:
          0.023233337 = sum of:
            0.023233337 = weight(_text_:system in 471) [ClassicSimilarity], result of:
              0.023233337 = score(doc=471,freq=2.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.17398985 = fieldWeight in 471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=471)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    We present evidence that in some research fields, research published in journals and reported on the Web may collectively represent different evolutionary stages of the field, with journals lagging a few years behind the Web on average, and that a "two-tier" scholarly communication system may therefore be evolving. We conclude that in such fields, (a) for detecting current research fronts, author co-citation analyses (ACA) using articles published on the Web as a data source can outperform traditional ACAs using articles published in journals as data, and that (b) as a result, it is important to use multiple data sources in citation analysis studies of scholarly communication for a complete picture of communication patterns. Our evidence stems from comparing the respective intellectual structures of the XML research field, a subfield of computer science, as revealed from three sets of ACA covering two time periods: (a) from the field's beginnings in 1996 to 2001, and (b) from 2001 to 2006. For the first time period, we analyze research articles both from journals as indexed by the Science Citation Index (SCI) and from the Web as indexed by CiteSeer. We follow up by an ACA of SCI data for the second time period. We find that most trends in the evolution of this field from the first to the second time period that we find when comparing ACA results from the SCI between the two time periods already were apparent in the ACA results from CiteSeer during the first time period.
  9. H-Index auch im Web of Science (2008) 0.02
    0.02111192 = product of:
      0.06333576 = sum of:
        0.051847253 = weight(_text_:web in 590) [ClassicSimilarity], result of:
          0.051847253 = score(doc=590,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.37471575 = fieldWeight in 590, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=590)
        0.011488512 = product of:
          0.034465536 = sum of:
            0.034465536 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
              0.034465536 = score(doc=590,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.23214069 = fieldWeight in 590, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science
  10. Craven, T.C.: Determining authorship of Web pages (2006) 0.02
    0.020971185 = product of:
      0.06291355 = sum of:
        0.04938862 = weight(_text_:web in 1498) [ClassicSimilarity], result of:
          0.04938862 = score(doc=1498,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.35694647 = fieldWeight in 1498, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1498)
        0.01352493 = product of:
          0.04057479 = sum of:
            0.04057479 = weight(_text_:29 in 1498) [ClassicSimilarity], result of:
              0.04057479 = score(doc=1498,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.27205724 = fieldWeight in 1498, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1498)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Assignability of authors to Web pages using either normal browsing procedures or browsing assisted by simple automatic extraction was investigated. Candidate strings for 1000 pages were extracted automatically from title elements, meta-tags, and address-like and copyright-like passages; 539 of the pages produced at least one candidate: 310 candidates from titles, 66 from meta-tags, 91 from address-like passages, and 259 from copyright-like passages. An assistant attempted to identify personal authors for 943 pages by examining the pages themselves and related pages; this added 90 pages with authors to the pages from which no candidate strings were extracted. Specific problems are noted and some refinements to the extraction methods are suggested.
    Date
    29. 2.2008 17:17:33
  11. Amitay, E.; Carmel, D.; Herscovici, M.; Lempel, R.; Soffer, A.: Trend detection through temporal link analysis (2004) 0.02
    0.018902827 = product of:
      0.056708477 = sum of:
        0.035277586 = weight(_text_:web in 3092) [ClassicSimilarity], result of:
          0.035277586 = score(doc=3092,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.25496176 = fieldWeight in 3092, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3092)
        0.02143089 = weight(_text_:retrieval in 3092) [ClassicSimilarity], result of:
          0.02143089 = score(doc=3092,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.16710453 = fieldWeight in 3092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3092)
      0.33333334 = coord(2/6)
    
    Abstract
    Although time has been recognized as an important dimension in the co-citation literature, to date it has not been incorporated into the analogous process of link analysis an the Web. In this paper, we discuss several aspects and uses of the time dimension in the context of Web information retrieval. We describe the ideal casewhere search engines track and store temporal data for each of the pages in their repository, assigning timestamps to the hyperlinks embedded within the pages. We introduce several applications which benefit from the availability of such timestamps. To demonstrate our claims, we use a somewhat simplistic approach, which dates links by approximating the age of the page's content. We show that by using this crude measure alone it is possible to detect and expose significant events and trends. We predict that by using more robust methods for tracking modifications in the content of pages, search engines will be able to provide results that are more timely and better reflect current real-life trends than those they provide today.
  12. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.02
    0.018747037 = product of:
      0.05624111 = sum of:
        0.02143089 = weight(_text_:retrieval in 5767) [ClassicSimilarity], result of:
          0.02143089 = score(doc=5767,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.16710453 = fieldWeight in 5767, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5767)
        0.034810223 = product of:
          0.05221533 = sum of:
            0.023233337 = weight(_text_:system in 5767) [ClassicSimilarity], result of:
              0.023233337 = score(doc=5767,freq=2.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.17398985 = fieldWeight in 5767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5767)
            0.028981995 = weight(_text_:29 in 5767) [ClassicSimilarity], result of:
              0.028981995 = score(doc=5767,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.19432661 = fieldWeight in 5767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5767)
          0.6666667 = coord(2/3)
      0.33333334 = coord(2/6)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
    Date
    29. 9.2001 14:01:01
  13. Sanderson, M.: Revisiting h measured on UK LIS and IR academics (2008) 0.02
    0.0179753 = product of:
      0.0539259 = sum of:
        0.042333104 = weight(_text_:web in 1867) [ClassicSimilarity], result of:
          0.042333104 = score(doc=1867,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3059541 = fieldWeight in 1867, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1867)
        0.011592798 = product of:
          0.034778394 = sum of:
            0.034778394 = weight(_text_:29 in 1867) [ClassicSimilarity], result of:
              0.034778394 = score(doc=1867,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.23319192 = fieldWeight in 1867, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1867)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    A brief communication appearing in this journal ranked UK-based LIS and (some) IR academics by their h-index using data derived from the Thomson ISI Web of Science(TM) (WoS). In this brief communication, the same academics were re-ranked, using other popular citation databases. It was found that for academics who publish more in computer science forums, their h was significantly different due to highly cited papers missed by WoS; consequently, their rank changed substantially. The study was widened to a broader set of UK-based LIS and IR academics in which results showed similar statistically significant differences. A variant of h, hmx, was introduced that allowed a ranking of the academics using all citation databases together.
    Date
    1. 6.2008 12:29:25
    Object
    Web of Science
  14. Archambault, E.; Campbell, D; Gingras, Y.; Larivière, V.: Comparing bibliometric statistics obtained from the Web of Science and Scopus (2009) 0.02
    0.017622236 = product of:
      0.05286671 = sum of:
        0.043206044 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
          0.043206044 = score(doc=2933,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3122631 = fieldWeight in 2933, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2933)
        0.009660665 = product of:
          0.028981995 = sum of:
            0.028981995 = weight(_text_:29 in 2933) [ClassicSimilarity], result of:
              0.028981995 = score(doc=2933,freq=2.0), product of:
                0.14914064 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.042397358 = queryNorm
                0.19432661 = fieldWeight in 2933, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2933)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    For more than 40 years, the Institute for Scientific Information (ISI, now part of Thomson Reuters) produced the only available bibliographic databases from which bibliometricians could compile large-scale bibliometric indicators. ISI's citation indexes, now regrouped under the Web of Science (WoS), were the major sources of bibliometric data until 2004, when Scopus was launched by the publisher Reed Elsevier. For those who perform bibliometric analyses and comparisons of countries or institutions, the existence of these two major databases raises the important question of the comparability and stability of statistics obtained from different data sources. This paper uses macrolevel bibliometric indicators to compare results obtained from the WoS and Scopus. It shows that the correlations between the measures obtained with both databases for the number of papers and the number of citations received by countries, as well as for their ranks, are extremely high. There is also a very high correlation when countries' papers are broken down by field. The paper thus provides evidence that indicators of scientific production and citations at the country level are stable and largely independent of the database.
    Date
    19. 7.2009 12:20:29
    Object
    Web of Science
  15. Koehler, W.: Web page change and persistence : a four-year longitudinal study (2002) 0.02
    0.016546655 = product of:
      0.09927993 = sum of:
        0.09927993 = weight(_text_:web in 203) [ClassicSimilarity], result of:
          0.09927993 = score(doc=203,freq=22.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.717526 = fieldWeight in 203, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=203)
      0.16666667 = coord(1/6)
    
    Abstract
    Changes in the topography of the Web can be expressed in at least four ways: (1) more sites on more servers in more places, (2) more pages and objects added to existing sites and pages, (3) changes in traffic, and (4) modifications to existing text, graphic, and other Web objects. This article does not address the first three factors (more sites, more pages, more traffic) in the growth of the Web. It focuses instead on changes to an existing set of Web documents. The article documents changes to an aging set of Web pages, first identified and "collected" in December 1996 and followed weekly thereafter. Results are reported through February 2001. The article addresses two related phenomena: (1) the life cycle of Web objects, and (2) changes to Web objects. These data reaffirm that the half-life of a Web page is approximately 2 years. There is variation among Web pages by top-level domain and by page type (navigation, content). Web page content appears to stabilize over time; aging pages change less often than once they did
  16. Park, H.W.; Barnett, G.A.; Nam, I.-Y.: Hyperlink - affiliation network structure of top Web sites : examining affiliates with hyperlink in Korea (2002) 0.02
    0.016462874 = product of:
      0.09877724 = sum of:
        0.09877724 = weight(_text_:web in 584) [ClassicSimilarity], result of:
          0.09877724 = score(doc=584,freq=16.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.71389294 = fieldWeight in 584, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=584)
      0.16666667 = coord(1/6)
    
    Abstract
    This article argues that individual Web sites form hyperlink-affiliations with others for the purpose of strengthening their individual trust, expertness, and safety. It describes the hyperlink-affiliation network structure of Korea's top 152 Web sites. The data were obtained from their Web sites for October 2000. The results indicate that financial Web sites, such as credit card and stock Web sites, occupy the most central position in the network. A cluster analysis reveals that the structure of the hyperlink-affiliation network is influenced by the financial Web sites with which others are affiliated. These findings are discussed from the perspective of Web site credibility.
  17. Sidiropoulos, A.; Manolopoulos, Y.: ¬A new perspective to automatically rank scientific conferences using digital libraries (2005) 0.02
    0.016173564 = product of:
      0.04852069 = sum of:
        0.029934023 = weight(_text_:web in 1011) [ClassicSimilarity], result of:
          0.029934023 = score(doc=1011,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.21634221 = fieldWeight in 1011, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1011)
        0.018586671 = product of:
          0.05576001 = sum of:
            0.05576001 = weight(_text_:system in 1011) [ClassicSimilarity], result of:
              0.05576001 = score(doc=1011,freq=8.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.41757566 = fieldWeight in 1011, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1011)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Citation analysis is performed in order to evaluate authors and scientific collections, such as journals and conference proceedings. Currently, two major systems exist that perform citation analysis: Science Citation Index (SCI) by the Institute for Scientific Information (ISI) and CiteSeer by the NEC Research Institute. The SCI, mostly a manual system up until recently, is based on the notion of the ISI Impact Factor, which has been used extensively for citation analysis purposes. On the other hand the CiteSeer system is an automatically built digital library using agents technology, also based on the notion of ISI Impact Factor. In this paper, we investigate new alternative notions besides the ISI impact factor, in order to provide a novel approach aiming at ranking scientific collections. Furthermore, we present a web-based system that has been built by extracting data from the Databases and Logic Programming (DBLP) website of the University of Trier. Our system, by using the new citation metrics, emerges as a useful tool for ranking scientific collections. In this respect, some first remarks are presented, e.g. on ranking conferences related to databases.
  18. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.02
    0.015776616 = product of:
      0.09465969 = sum of:
        0.09465969 = weight(_text_:web in 82) [ClassicSimilarity], result of:
          0.09465969 = score(doc=82,freq=20.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.6841342 = fieldWeight in 82, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=82)
      0.16666667 = coord(1/6)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  19. Tang, R.; Safer, M.A.: Author-rated importance of cited references in biology and psychology publications (2008) 0.02
    0.015458636 = product of:
      0.046375908 = sum of:
        0.02494502 = weight(_text_:web in 1738) [ClassicSimilarity], result of:
          0.02494502 = score(doc=1738,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.18028519 = fieldWeight in 1738, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1738)
        0.02143089 = weight(_text_:retrieval in 1738) [ClassicSimilarity], result of:
          0.02143089 = score(doc=1738,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.16710453 = fieldWeight in 1738, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1738)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The present study aims to investigate how textual features, depth of citation treatment, reasons for citation, and relationships between citers and citees predict author-rated citation importance. Design/methodology/approach - A total of 49 biology and 50 psychology authors assessed the importance, reason for citation, and relationship to the cited author for each cited reference in his or her own recently published empirical article. Participants performed their evaluations on individualized web-based surveys. Findings - The paper finds that certain textual features, such as citation frequency, citation length, and citation location, as well as author-stated reasons for citation predicted ratings of importance, but the strength of the relationship often depended on citation features in the article as a whole. The relationship between objective citation features and author-rated importance also tended to be weaker for self-citations. Research limitations/implications - The study sample included authors of relatively long empirical articles with a minimum of 35 cited references. There were relatively few disciplinary differences, which suggests that citation behavior in psychology may be similar to that in natural science disciplines. Future studies should involve authors from other disciplines employing diverse referencing patterns in articles of varying lengths and types. Originality/value - Findings of the study have enabled a comprehensive, profound level of understanding of citation behaviors of biology and psychology authors. It uncovered a number of unique characteristics in authors' citation evaluations, such as article-level context effects and rule- versus affective-based judgments. The paper suggests possible implications for developing retrieval algorithms based on automatically predicted importance of cited references.
  20. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.02
    0.015393745 = product of:
      0.046181235 = sum of:
        0.029934023 = weight(_text_:web in 2763) [ClassicSimilarity], result of:
          0.029934023 = score(doc=2763,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.21634221 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.016247213 = product of:
          0.048741635 = sum of:
            0.048741635 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.048741635 = score(doc=2763,freq=4.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35

Authors

Languages

  • e 193
  • d 13
  • More… Less…

Types

  • a 200
  • m 4
  • el 2
  • r 2
  • s 1
  • More… Less…