Search (6 results, page 1 of 1)

  • × theme_ss:"Inhaltsanalyse"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment strength detection for the social web (2012) 0.00
    0.0041234493 = product of:
      0.041234493 = sum of:
        0.041234493 = weight(_text_:web in 4972) [ClassicSimilarity], result of:
          0.041234493 = score(doc=4972,freq=12.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.4416067 = fieldWeight in 4972, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4972)
      0.1 = coord(1/10)
    
    Abstract
    Sentiment analysis is concerned with the automatic extraction of sentiment-related information from text. Although most sentiment analysis addresses commercial tasks, such as extracting opinions from product reviews, there is increasing interest in the affective dimension of the social web, and Twitter in particular. Most sentiment analysis algorithms are not ideally suited to this task because they exploit indirect indicators of sentiment that can reflect genre or topic instead. Hence, such algorithms used to process social web texts can identify spurious sentiment patterns caused by topics rather than affective phenomena. This article assesses an improved version of the algorithm SentiStrength for sentiment strength detection across the social web that primarily uses direct indications of sentiment. The results from six diverse social web data sets (MySpace, Twitter, YouTube, Digg, Runners World, BBC Forums) indicate that SentiStrength 2 is successful in the sense of performing better than a baseline approach for all data sets in both supervised and unsupervised cases. SentiStrength is not always better than machine-learning approaches that exploit indirect indicators of sentiment, however, and is particularly weaker for positive sentiment in news-related discussions. Overall, the results suggest that, even unsupervised, SentiStrength is robust enough to be applied to a wide variety of different social web contexts.
  2. Bertola, F.; Patti, V.: Ontology-based affective models to organize artworks in the social semantic web (2016) 0.00
    0.0029157193 = product of:
      0.029157192 = sum of:
        0.029157192 = weight(_text_:web in 2669) [ClassicSimilarity], result of:
          0.029157192 = score(doc=2669,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 2669, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2669)
      0.1 = coord(1/10)
    
    Abstract
    In this paper, we focus on applying sentiment analysis to resources from online art collections, by exploiting, as information source, tags intended as textual traces that visitors leave to comment artworks on social platforms. We present a framework where methods and tools from a set of disciplines, ranging from Semantic and Social Web to Natural Language Processing, provide us the building blocks for creating a semantic social space to organize artworks according to an ontology of emotions. The ontology is inspired by the Plutchik's circumplex model, a well-founded psychological model of human emotions. Users can be involved in the creation of the emotional space, through a graphical interactive interface. The development of such semantic space enables new ways of accessing and exploring art collections. The affective categorization model and the emotion detection output are encoded into W3C ontology languages. This gives us the twofold advantage to enable tractable reasoning on detected emotions and related artworks, and to foster the interoperability and integration of tools developed in the Semantic Web and Linked Data community. The proposal has been evaluated against a real-word case study, a dataset of tagged multimedia artworks from the ArsMeteo Italian online collection, and validated through a user study.
  3. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.00
    0.0013467129 = product of:
      0.013467129 = sum of:
        0.013467129 = weight(_text_:web in 2671) [ClassicSimilarity], result of:
          0.013467129 = score(doc=2671,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.14422815 = fieldWeight in 2671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
      0.1 = coord(1/10)
    
    Abstract
    In recent years, there has been a rapid growth of user-generated data in collaborative tagging (a.k.a. folksonomy-based) systems due to the prevailing of Web 2.0 communities. To effectively assist users to find their desired resources, it is critical to understand user behaviors and preferences. Tag-based profile techniques, which model users and resources by a vector of relevant tags, are widely employed in folksonomy-based systems. This is mainly because that personalized search and recommendations can be facilitated by measuring relevance between user profiles and resource profiles. However, conventional measurements neglect the sentiment aspect of user-generated tags. In fact, tags can be very emotional and subjective, as users usually express their perceptions and feelings about the resources by tags. Therefore, it is necessary to take sentiment relevance into account into measurements. In this paper, we present a novel generic framework SenticRank to incorporate various sentiment information to various sentiment-based information for personalized search by user profiles and resource profiles. In this framework, content-based sentiment ranking and collaborative sentiment ranking methods are proposed to obtain sentiment-based personalized ranking. To the best of our knowledge, this is the first work of integrating sentiment information to address the problem of the personalized tag-based search in collaborative tagging systems. Moreover, we compare the proposed sentiment-based personalized search with baselines in the experiments, the results of which have verified the effectiveness of the proposed framework. In addition, we study the influences by popular sentiment dictionaries, and SenticNet is the most prominent knowledge base to boost the performance of personalized search in folksonomy.
  4. Raieli, R.: ¬The semantic hole : enthusiasm and caution around multimedia information retrieval (2012) 0.00
    9.1368984E-4 = product of:
      0.009136898 = sum of:
        0.009136898 = product of:
          0.027410695 = sum of:
            0.027410695 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
              0.027410695 = score(doc=4888,freq=4.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.27358043 = fieldWeight in 4888, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4888)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    22. 1.2012 13:02:10
    Source
    Knowledge organization. 39(2012) no.1, S.13-22
  5. Caldera-Serrano, J.: Thematic description of audio-visual information on television (2010) 0.00
    7.823291E-4 = product of:
      0.007823291 = sum of:
        0.007823291 = product of:
          0.023469873 = sum of:
            0.023469873 = weight(_text_:29 in 3953) [ClassicSimilarity], result of:
              0.023469873 = score(doc=3953,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23319192 = fieldWeight in 3953, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3953)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    29. 8.2010 12:40:35
  6. Chen, S.-J.; Lee, H.-L.: Art images and mental associations : a preliminary exploration (2014) 0.00
    7.752915E-4 = product of:
      0.0077529154 = sum of:
        0.0077529154 = product of:
          0.023258746 = sum of:
            0.023258746 = weight(_text_:22 in 1416) [ClassicSimilarity], result of:
              0.023258746 = score(doc=1416,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23214069 = fieldWeight in 1416, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1416)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik