Search (3 results, page 1 of 1)

  • × theme_ss:"Internet"
  • × type_ss:"a"
  1. O'Kane, K.C.: World Wide Web-based information storage and retrieval (1996) 0.05
    0.051328506 = product of:
      0.13687602 = sum of:
        0.07865016 = weight(_text_:storage in 4737) [ClassicSimilarity], result of:
          0.07865016 = score(doc=4737,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.42141256 = fieldWeight in 4737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4737)
        0.041983422 = weight(_text_:retrieval in 4737) [ClassicSimilarity], result of:
          0.041983422 = score(doc=4737,freq=6.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.40520695 = fieldWeight in 4737, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4737)
        0.016242424 = product of:
          0.032484848 = sum of:
            0.032484848 = weight(_text_:22 in 4737) [ClassicSimilarity], result of:
              0.032484848 = score(doc=4737,freq=2.0), product of:
                0.119945176 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034252144 = queryNorm
                0.2708308 = fieldWeight in 4737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4737)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Describes the design and implementation of a system for computer generation of linked HTML documents to support information retrieval and hypertext applications on the WWW. The system does not require text query input, nor any client or host processing other than hypertext linkage. The goal is to construct a fully automatic system in which original text documents are read and processed by a computer program that generates HTML files, which can be used immediately by Web browsers to search and retrieve the original documents. A user with a large collection of information: for instance, newspaper articles; can feed these documents to this program and produce directly the necessary files to establish WWW home page and related pages, to support interactive retrieval and distribution of the original documents
    Date
    1. 8.1996 22:13:07
  2. Sever, S.; Harel, C.H.: Managing the virtual library : issues and challenges (1995) 0.02
    0.022047708 = product of:
      0.08819083 = sum of:
        0.067414425 = weight(_text_:storage in 1697) [ClassicSimilarity], result of:
          0.067414425 = score(doc=1697,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.36121076 = fieldWeight in 1697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.046875 = fieldNorm(doc=1697)
        0.020776404 = weight(_text_:retrieval in 1697) [ClassicSimilarity], result of:
          0.020776404 = score(doc=1697,freq=2.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.20052543 = fieldWeight in 1697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1697)
      0.25 = coord(2/8)
    
    Abstract
    Advances in information storage and communication technology have made it possible to tranport all recorded formats - sight, sound, motion and text - to wherever networking infrastructure exists. In this virtual library environment anyone equipped to reach the network can potentially retrieve the resources it offers. Paradoxically, while access to information has been technologically facilitated through Internet, the process of locating desired information has become more complex for the user. Issues confronting virtual library managers are discussed - computer literacy, the user interface, user education, and organization of electronically available knowledge. The challenge to library professionals in the new virtual library environment is to develop and implement standards for organizing the diverse electronic recources available, and to facilitate information retrieval, in order to continue to provide the best possible service to the largest number of users
  3. Aldana, J.F.; Gómez, A.C.; Moreno, N.; Nebro, A.J.; Roldán, M.M.: Metadata functionality for semantic Web integration (2003) 0.02
    0.016132783 = product of:
      0.06453113 = sum of:
        0.044942953 = weight(_text_:storage in 2731) [ClassicSimilarity], result of:
          0.044942953 = score(doc=2731,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.24080718 = fieldWeight in 2731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.03125 = fieldNorm(doc=2731)
        0.019588182 = weight(_text_:retrieval in 2731) [ClassicSimilarity], result of:
          0.019588182 = score(doc=2731,freq=4.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.18905719 = fieldWeight in 2731, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2731)
      0.25 = coord(2/8)
    
    Abstract
    We propose an extension of a mediator architecture. This extension is oriented to ontology-driven data integration. In our architecture ontologies are not managed by an extemal component or service, but are integrated in the mediation layer. This approach implies rethinking the mediator design, but at the same time provides advantages from a database perspective. Some of these advantages include the application of optimization and evaluation techniques that use and combine information from all abstraction levels (physical schema, logical schema and semantic information defined by ontology). 1. Introduction Although the Web is probably the richest information repository in human history, users cannot specify what they want from it. Two major problems that arise in current search engines (Heflin, 2001) are: a) polysemy, when the same word is used with different meanings; b) synonymy, when two different words have the same meaning. Polysemy causes irrelevant information retrieval. On the other hand, synonymy produces lost of useful documents. The lack of a capability to understand the context of the words and the relationships among required terms, explains many of the lost and false results produced by search engines. The Semantic Web will bring structure to the meaningful content of Web pages, giving semantic relationships among terms and possibly avoiding the previous problems. Various proposals have appeared for meta-data representation and communication standards, and other services and tools that may eventually merge into the global Semantic Web (Berners-lee, 2001). Hopefully, in the next few years we will see the universal adoption of open standards for representation and sharing of meta-information. In this environment, software agents roaming from page to page can readily carry out sophisticated tasks for users (Berners-Lee, 2001). In this context, ontologies can be seen as metadata that represent semantic of data; providing a knowledge domain standard vocabulary, like DTDs and XML Schema do. If its pages were so structured, the Web could be seen as a heterogeneous collection of autonomous databases. This suggests that techniques developed in the Database area could be useful. Database research mainly deals with efficient storage and retrieval and with powerful query languages.