Search (36 results, page 1 of 2)

  • × theme_ss:"Internet"
  • × type_ss:"el"
  • × year_i:[2000 TO 2010}
  1. Pott, O.; Wielage, G.: XML Praxis und Referenz (2000) 0.04
    0.036077246 = product of:
      0.10823174 = sum of:
        0.065025695 = weight(_text_:wide in 6985) [ClassicSimilarity], result of:
          0.065025695 = score(doc=6985,freq=4.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.34615302 = fieldWeight in 6985, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
        0.043206044 = weight(_text_:web in 6985) [ClassicSimilarity], result of:
          0.043206044 = score(doc=6985,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3122631 = fieldWeight in 6985, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
      0.33333334 = coord(2/6)
    
    Abstract
    Mit wohl einem der faszinierendsten und innovativsten Themen der Gegenwart und allernächsten Zukunft des Internet befasst sich dieses Buch: XML. Nie als HTML-Ersatz gedacht, erweitert es das Spektrum möglicher Anwendungen im Internet einerseits und schließt andererseits klaffende Lücken und technische Unzulänglichkeiten. Keine Frage: Wer sich als Web-Administrator, Autor eines privaten oder geschäftlichen Internet-Auftritts, Intranet-Verantwortlicher oder -Anwender mit HTML auseinandergesetzt hat, wird in Zukunft auch um XML nicht umhinkommen. Auch außerhalb der Online-Szene hat sich XML bereits heute als richtungsweisender Standard des Dokumentenmanagements etabliert. Dieses Buch bietet das komplette XML- und XSL-Wissen auf praxisnahem und hohem Niveau. Neben einer fundierten Einführung finden Sie das komplette Know-how, stets belegt und beschrieben durch Praxisanwendungen, das Sie für die Arbeit mit XML benötigen. Mit viel Engagement und Zeitaufwand haben uns Firmen, Freunde, Mitarbeiter und der Markt & Technik-Verlag unterstützt. Unser Dank gilt daher all jenen, die ihren Anteil am Gelingen dieses Buches hatten und noch haben werden. In der zweiten völlig aktualisierten und stark erweiterten Ausgabe dieses Buches konnten wir zahlreiche positive Rückmeldungen von Leserinnen und Lesern berücksichtigen. So greift dieses Buch jetzt auch neueste Entwicklungen aus der XML-Entwicklung auf. Dazu gehören beispielsweise SMIL und WML (WAP) oder die erst im Dezember 1999 veröffentlichte X-HTML Empfehlung.
    RSWK
    World wide web / Seite / Gestaltung (213)
    Subject
    World wide web / Seite / Gestaltung (213)
  2. Schneider, R.: Bibliothek 1.0, 2.0 oder 3.0? (2008) 0.03
    0.03298229 = product of:
      0.09894687 = sum of:
        0.0855436 = weight(_text_:web in 6122) [ClassicSimilarity], result of:
          0.0855436 = score(doc=6122,freq=12.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.6182494 = fieldWeight in 6122, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6122)
        0.013403265 = product of:
          0.040209793 = sum of:
            0.040209793 = weight(_text_:22 in 6122) [ClassicSimilarity], result of:
              0.040209793 = score(doc=6122,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.2708308 = fieldWeight in 6122, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6122)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Noch ist nicht entschieden mit welcher Vehemenz das sogenannte Web 2.0 die Bibliotheken verändern wird. Allerdings wird hier und da bereits mit Bezugnahme auf das sogenannte Semantic Web von einer dritten und mancherorts von einer vierten Generation des Web gesprochen. Der Vortrag hinterfragt kritisch, welche Konzepte sich hinter diesen Bezeichnungen verbergen und geht der Frage nach, welche Herausforderungen eine Übernahme dieser Konzepte für die Bibliothekswelt mit sich bringen würde. Vgl. insbes. Folie 22 mit einer Darstellung von der Entwicklung vom Web 1.0 zum Web 4.0
    Object
    Web 2.0
  3. OWLED 2009; OWL: Experiences and Directions, Sixth International Workshop, Chantilly, Virginia, USA, 23-24 October 2009, Co-located with ISWC 2009. (2009) 0.03
    0.0263827 = product of:
      0.0527654 = sum of:
        0.029934023 = weight(_text_:web in 3391) [ClassicSimilarity], result of:
          0.029934023 = score(doc=3391,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.21634221 = fieldWeight in 3391, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3391)
        0.018184712 = weight(_text_:retrieval in 3391) [ClassicSimilarity], result of:
          0.018184712 = score(doc=3391,freq=4.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.1417929 = fieldWeight in 3391, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3391)
        0.0046466677 = product of:
          0.013940003 = sum of:
            0.013940003 = weight(_text_:system in 3391) [ClassicSimilarity], result of:
              0.013940003 = score(doc=3391,freq=2.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.104393914 = fieldWeight in 3391, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3391)
          0.33333334 = coord(1/3)
      0.5 = coord(3/6)
    
    Abstract
    The W3C OWL Web Ontology Language has been a W3C recommendation since 2004, and specification of its successor OWL 2 is being finalised. OWL plays an important role in an increasing number and range of applications and as experience using the language grows, new ideas for further extending its reach continue to be proposed. The OWL: Experiences and Direction (OWLED) workshop series is a forum for practitioners in industry and academia, tool developers, and others interested in OWL to describe real and potential applications, to share experience, and to discuss requirements for language extensions and modifications. The workshop will bring users, implementors and researchers together to measure the state of need against the state of the art, and to set an agenda for research and deployment in order to incorporate OWL-based technologies into new applications. This year's 2009 OWLED workshop will be co-located with the Eighth International Semantic Web Conference (ISWC), and the Third International Conference on Web Reasoning and Rule Systems (RR2009). It will be held in Chantilly, VA, USA on October 23 - 24, 2009. The workshop will concentrate on issues related to the development and W3C standardization of OWL 2, and beyond, but other issues related to OWL are also of interest, particularly those related to the task forces set up at OWLED 2007. As usual, the workshop will try to encourage participants to work together and will give space for discussions on various topics, to be decided and published at some point in the future. We ask participants to have a look at these topics and the accepted submissions before the workshop, and to prepare single "slides" that can be presented during these discussions. There will also be formal presentation of submissions to the workshop.
    Content
    Short Papers * A Database Backend for OWL, Jörg Henss, Joachim Kleb and Stephan Grimm. * Unifying SysML and OWL, Henson Graves. * The OWLlink Protocol, Thorsten Liebig, Marko Luther and Olaf Noppens. * A Reasoning Broker Framework for OWL, Juergen Bock, Tuvshintur Tserendorj, Yongchun Xu, Jens Wissmann and Stephan Grimm. * Change Representation For OWL 2 Ontologies, Raul Palma, Peter Haase, Oscar Corcho and Asunción Gómez-Pérez. * Practical Aspects of Query Rewriting for OWL 2, Héctor Pérez-Urbina, Ian Horrocks and Boris Motik. * CSage: Use of a Configurable Semantically Attributed Graph Editor as Framework for Editing and Visualization, Lawrence Levin. * A Conformance Test Suite for the OWL 2 RL/RDF Rules Language and the OWL 2 RDF-Based Semantics, Michael Schneider and Kai Mainzer. * Improving the Data Quality of Relational Databases using OBDA and OWL 2 QL, Olivier Cure. * Temporal Classes and OWL, Natalya Keberle. * Using Ontologies for Medical Image Retrieval - An Experiment, Jasmin Opitz, Bijan Parsia and Ulrike Sattler. * Task Representation and Retrieval in an Ontology-Guided Modelling System, Yuan Ren, Jens Lemcke, Andreas Friesen, Tirdad Rahmani, Srdjan Zivkovic, Boris Gregorcic, Andreas Bartho, Yuting Zhao and Jeff Z. Pan. * A platform for reasoning with OWL-EL knowledge bases in a Peer-to-Peer environment, Alexander De Leon and Michel Dumontier. * Axiomé: a Tool for the Elicitation and Management of SWRL Rules, Saeed Hassanpour, Martin O'Connor and Amar Das. * SQWRL: A Query Language for OWL, Martin O'Connor and Amar Das. * Classifying ELH Ontologies In SQL Databases, Vincent Delaitre and Yevgeny Kazakov. * A Semantic Web Approach to Represent and Retrieve Information in a Corporate Memory, Ana B. Rios-Alvarado, R. Carolina Medina-Ramirez and Ricardo Marcelin-Jimenez. * Towards a Graphical Notation for OWL 2, Elisa Kendall, Roy Bell, Roger Burkhart, Mark Dutra and Evan Wallace.
  4. Wesch, M.: Web 2.0 ... The Machine is Us/ing Us (2006) 0.02
    0.02392072 = product of:
      0.07176216 = sum of:
        0.05644414 = weight(_text_:web in 3478) [ClassicSimilarity], result of:
          0.05644414 = score(doc=3478,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.4079388 = fieldWeight in 3478, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3478)
        0.015318017 = product of:
          0.045954052 = sum of:
            0.045954052 = weight(_text_:22 in 3478) [ClassicSimilarity], result of:
              0.045954052 = score(doc=3478,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.30952093 = fieldWeight in 3478, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3478)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Web 2.0 in just under 5 minutes.
    Date
    5. 1.2008 19:22:48
  5. Blosser, J.; Michaelson, R.; Routh. R.; Xia, P.: Defining the landscape of Web resources : Concluding Report of the BAER Web Resources Sub-Group (2000) 0.02
    0.020152558 = product of:
      0.06045767 = sum of:
        0.05279866 = weight(_text_:web in 1447) [ClassicSimilarity], result of:
          0.05279866 = score(doc=1447,freq=14.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.38159183 = fieldWeight in 1447, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1447)
        0.0076590087 = product of:
          0.022977026 = sum of:
            0.022977026 = weight(_text_:22 in 1447) [ClassicSimilarity], result of:
              0.022977026 = score(doc=1447,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.15476047 = fieldWeight in 1447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1447)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    The BAER Web Resources Group was charged in October 1999 with defining and describing the parameters of electronic resources that do not clearly belong to the categories being defined by the BAER Digital Group or the BAER Electronic Journals Group. After some difficulty identifying precisely which resources fell under the Group's charge, we finally named the following types of resources for our consideration: web sites, electronic texts, indexes, databases and abstracts, online reference resources, and networked and non-networked CD-ROMs. Electronic resources are a vast and growing collection that touch nearly every department within the Library. It is unrealistic to think one department can effectively administer all aspects of the collection. The Group then began to focus on the concern of bibliographic access to these varied resources, and to define parameters for handling or processing them within the Library. Some key elements became evident as the work progressed. * Selection process of resources to be acquired for the collection * Duplication of effort * Use of CORC * Resource Finder design * Maintenance of Resource Finder * CD-ROMs not networked * Communications * Voyager search limitations. An unexpected collaboration with the Web Development Committee on the Resource Finder helped to steer the Group to more detailed descriptions of bibliographic access. This collaboration included development of data elements for the Resource Finder database, and some discussions on Library staff processing of the resources. The Web Resources Group invited expert testimony to help the Group broaden its view to envision public use of the resources and discuss concerns related to technical services processing. The first testimony came from members of the Resource Finder Committee. Some background information on the Web Development Resource Finder Committee was shared. The second testimony was from librarians who select electronic texts. Three main themes were addressed: accessing CD-ROMs; the issue of including non-networked CD-ROMs in the Resource Finder; and, some special concerns about electronic texts. The third testimony came from librarians who select indexes and abstracts and also provide Reference services. Appendices to this report include minutes of the meetings with the experts (Appendix A), a list of proposed data elements to be used in the Resource Finder (Appendix B), and recommendations made to the Resource Finder Committee (Appendix C). Below are summaries of the key elements.
    Date
    21. 4.2002 10:22:31
  6. Maaß, C.; Pietsch, G.: Web 2.0 als Mythos, Symbol und Erwartung (2007) 0.02
    0.016462874 = product of:
      0.09877724 = sum of:
        0.09877724 = weight(_text_:web in 5037) [ClassicSimilarity], result of:
          0.09877724 = score(doc=5037,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.71389294 = fieldWeight in 5037, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=5037)
      0.16666667 = coord(1/6)
    
    Object
    Web 2.0
  7. Dillon, M.: Metadata for Web resources : how metadata works on the Web (2000) 0.01
    0.014111035 = product of:
      0.08466621 = sum of:
        0.08466621 = weight(_text_:web in 6798) [ClassicSimilarity], result of:
          0.08466621 = score(doc=6798,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.6119082 = fieldWeight in 6798, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=6798)
      0.16666667 = coord(1/6)
    
  8. Spink, A.; Gunar, O.: E-Commerce Web queries : Excite and AskJeeves study (2001) 0.01
    0.01330401 = product of:
      0.07982406 = sum of:
        0.07982406 = weight(_text_:web in 910) [ClassicSimilarity], result of:
          0.07982406 = score(doc=910,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5769126 = fieldWeight in 910, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.125 = fieldNorm(doc=910)
      0.16666667 = coord(1/6)
    
  9. Galitsky, B.; Levene, M.: On the economy of Web links : Simulating the exchange process (2004) 0.01
    0.01330401 = product of:
      0.07982406 = sum of:
        0.07982406 = weight(_text_:web in 5640) [ClassicSimilarity], result of:
          0.07982406 = score(doc=5640,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5769126 = fieldWeight in 5640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.125 = fieldNorm(doc=5640)
      0.16666667 = coord(1/6)
    
  10. Lewandowski, D.; Mayr, P.: Exploring the academic invisible Web (2006) 0.01
    0.013147181 = product of:
      0.07888308 = sum of:
        0.07888308 = weight(_text_:web in 3752) [ClassicSimilarity], result of:
          0.07888308 = score(doc=3752,freq=20.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5701118 = fieldWeight in 3752, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3752)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose: To provide a critical review of Bergman's 2001 study on the Deep Web. In addition, we bring a new concept into the discussion, the Academic Invisible Web (AIW). We define the Academic Invisible Web as consisting of all databases and collections relevant to academia but not searchable by the general-purpose internet search engines. Indexing this part of the Invisible Web is central to scien-tific search engines. We provide an overview of approaches followed thus far. Design/methodology/approach: Discussion of measures and calculations, estima-tion based on informetric laws. Literature review on approaches for uncovering information from the Invisible Web. Findings: Bergman's size estimate of the Invisible Web is highly questionable. We demonstrate some major errors in the conceptual design of the Bergman paper. A new (raw) size estimate is given. Research limitations/implications: The precision of our estimate is limited due to a small sample size and lack of reliable data. Practical implications: We can show that no single library alone will be able to index the Academic Invisible Web. We suggest collaboration to accomplish this task. Originality/value: Provides library managers and those interested in developing academic search engines with data on the size and attributes of the Academic In-visible Web.
    Content
    Bezug zu: Bergman, M.K.: The Deep Web: surfacing hidden value. In: Journal of Electronic Publishing. 7(2001) no.1, S.xxx-xxx. [Vgl. unter: http://www.press.umich.edu/jep/07-01/bergman.html].
  11. Robbio, A. de; Maguolo, D.; Marini, A.: Scientific and general subject classifications in the digital world (2001) 0.01
    0.012366909 = product of:
      0.037100725 = sum of:
        0.019956015 = weight(_text_:web in 2) [ClassicSimilarity], result of:
          0.019956015 = score(doc=2,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.14422815 = fieldWeight in 2, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2)
        0.017144712 = weight(_text_:retrieval in 2) [ClassicSimilarity], result of:
          0.017144712 = score(doc=2,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.13368362 = fieldWeight in 2, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2)
      0.33333334 = coord(2/6)
    
    Abstract
    In the present work we discuss opportunities, problems, tools and techniques encountered when interconnecting discipline-specific subject classifications, primarily organized as search devices in bibliographic databases, with general classifications originally devised for book shelving in public libraries. We first state the fundamental distinction between topical (or subject) classifications and object classifications. Then we trace the structural limitations that have constrained subject classifications since their library origins, and the devices that were used to overcome the gap with genuine knowledge representation. After recalling some general notions on structure, dynamics and interferences of subject classifications and of the objects they refer to, we sketch a synthetic overview on discipline-specific classifications in Mathematics, Computing and Physics, on one hand, and on general classifications on the other. In this setting we present The Scientific Classifications Page, which collects groups of Web pages produced by a pool of software tools for developing hypertextual presentations of single or paired subject classifications from sequential source files, as well as facilities for gathering information from KWIC lists of classification descriptions. Further we propose a concept-oriented methodology for interconnecting subject classifications, with the concrete support of a relational analysis of the whole Mathematics Subject Classification through its evolution since 1959. Finally, we recall a very basic method for interconnection provided by coreference in bibliographic records among index elements from different systems, and point out the advantages of establishing the conditions of a more widespread application of such a method. A part of these contents was presented under the title Mathematics Subject Classification and related Classifications in the Digital World at the Eighth International Conference Crimea 2001, "Libraries and Associations in the Transient World: New Technologies and New Forms of Cooperation", Sudak, Ukraine, June 9-17, 2001, in a special session on electronic libraries, electronic publishing and electronic information in science chaired by Bernd Wegner, Editor-in-Chief of Zentralblatt MATH.
    Theme
    Klassifikationssysteme im Online-Retrieval
  12. Cross, P.: DESIRE: making the most of the Web (2000) 0.01
    0.01164101 = product of:
      0.06984606 = sum of:
        0.06984606 = weight(_text_:web in 2146) [ClassicSimilarity], result of:
          0.06984606 = score(doc=2146,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.50479853 = fieldWeight in 2146, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=2146)
      0.16666667 = coord(1/6)
    
  13. Choo, C.W.; Detlor, B.; Turnbull, D.: Information seeking on the Web : an integrated model of browsing and searching (2000) 0.01
    0.01008141 = product of:
      0.060488462 = sum of:
        0.060488462 = weight(_text_:web in 4438) [ClassicSimilarity], result of:
          0.060488462 = score(doc=4438,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43716836 = fieldWeight in 4438, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4438)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper presents findings from a study of how knowledge workers use the Web to seek external information as part of their daily work. 34 users from 7 companies took part in the study. Participants were mainly IT-specialists, managers, and research/marketing/consulting staff working in organizations that included a large utility company; a major bank, and a consulting firm. Participants answered a detailed questionnaire and were interviewed individually in order to understand their information needs and information seeking preferences. A custom-developed WebTracker software application was installed on each of their work place PCs, and participants' Web-use activities were then recorded continuously during two-week periods
  14. Bergman, M.K.: ¬The Deep Web : surfacing hidden value (2001) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 39) [ClassicSimilarity], result of:
          0.059868045 = score(doc=39,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=39)
      0.16666667 = coord(1/6)
    
  15. Brooks, T.A.: Where is meaning when form is gone? : Knowledge representation an the Web (2001) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 3889) [ClassicSimilarity], result of:
          0.059868045 = score(doc=3889,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 3889, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=3889)
      0.16666667 = coord(1/6)
    
  16. Keen, A.; Weinberger, D.: Keen vs. Weinberger : July 18, 2007. (2007) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 1304) [ClassicSimilarity], result of:
          0.059868045 = score(doc=1304,freq=18.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 1304, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1304)
      0.16666667 = coord(1/6)
    
    Abstract
    This is the full text of a "Reply All" debate on Web 2.0 between authors Andrew Keen and David Weinberger
    Content
    "Mr. Keen begins: So what, exactly, is Web 2.0? It is the radical democratization of media which is enabling anyone to publish anything on the Internet. Mainstream media's traditional audience has become Web 2.0's empowered author. Web 2.0 transforms all of us -- from 90-year-old grandmothers to eight-year-old third graders -- into digital writers, music artists, movie makers and journalists. Web 2.0 is YouTube, the blogosphere, Wikipedia, MySpace or Facebook. Web 2.0 is YOU! (Time Magazine's Person of the Year for 2006). Is Web 2.0 a dream or a nightmare? Is it a remix of Disney's "Cinderella" or of Kafka's "Metamorphosis"? Have we -- as empowered conversationalists in the global citizen media community -- woken up with the golden slipper of our ugly sister (aka: mainstream media) on our dainty little foot? Or have we -- as authors-formerly-know-as-the-audience -- woken up as giant cockroaches doomed to eternally stare at our hideous selves in the mirror of Web 2.0? Silicon Valley, of course, interprets Web 2.0 as Disney rather than Kafka. After all, as the sales and marketing architects of this great democratization argue, what could be wrong with a radically flattened media? Isn't it dreamy that we can all now publish ourselves, that we each possess digital versions of Johannes Gutenberg's printing press, that we are now able to easily create, distribute and sell our content on the Internet? This is personal liberation with an early 21st Century twist -- a mash-up of the countercultural Sixties, the free market idealism of the Eighties, and the technological determinism and consumer-centricity of the Nineties. The people have finally spoken. The media has become their message and the people are self-broadcasting this message of emancipation on their 70 million blogs, their hundreds of millions of YouTube videos, their MySpace pages and their Wikipedia entries. ..."
  17. Wilson, R.: ¬The role of ontologies in teaching and learning (2004) 0.01
    0.008799776 = product of:
      0.05279866 = sum of:
        0.05279866 = weight(_text_:web in 3387) [ClassicSimilarity], result of:
          0.05279866 = score(doc=3387,freq=14.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.38159183 = fieldWeight in 3387, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3387)
      0.16666667 = coord(1/6)
    
    Abstract
    Ontologies are currently a buzzword in many communities, hailed as a mechanism for making better use of the Web. They offer a shared definition of a domain that can be understood by computers, enabling them to complete more meaningful tasks. Although ontologies of different descriptions have been in development and use for some time, it is their potential as a key technology in the Semantic Web which is responsible for the current wave of interest. Communities have different expectations of the Semantic Web and how it will be realised, but it is generally believed that ontologies will play a major role. In light of their potential in this new context, much current effort is focusing an developing languages and tools. OWL (Web Ontology Language) has recently become a standard, and builds an top of existing Web languages such as XML and RDF to offer a high degree of expressiveness. A variety of tools are emerging for creating, editing and managing ontologies in OWL. Ontologies have a range of potential benefits and applications in further and higher education, including the sharing of information across educational systems, providing frameworks for learning object reuse, and enabling intelligent and personalised student support. The difficulties inherent in creating a model of a domain are being tackled, and the communities involved in ontology development are working together to achieve their vision of the Semantic Web. This Technology and Standards Watch report discusses ontologies and their role in the Semantic Web, with a special focus an their implications for teaching and learning. This report will introduce ontologies to the further and higher education community, explaining why they are being developed, what they hope to achieve, and their potential benefits to the community. Current ontology tools and standards will be described, and the emphasis will be an introducing the technology to a new audience and exploring its risks and potential applications in teaching and learning. At a time when educational programmes based an ontologies are starting to be developed, the author hopes to increase understanding of the key issues in the wider community.
  18. cis: Nationalbibliothek will das deutsche Internet kopieren (2008) 0.01
    0.008054382 = product of:
      0.024163146 = sum of:
        0.017461514 = weight(_text_:web in 4609) [ClassicSimilarity], result of:
          0.017461514 = score(doc=4609,freq=2.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.12619963 = fieldWeight in 4609, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4609)
        0.0067016324 = product of:
          0.020104896 = sum of:
            0.020104896 = weight(_text_:22 in 4609) [ClassicSimilarity], result of:
              0.020104896 = score(doc=4609,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.1354154 = fieldWeight in 4609, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4609)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Date
    24.10.2008 14:19:22
    Footnote
    Vgl. unter: http://www.spiegel.de/netzwelt/web/0,1518,586036,00.html.
  19. Van de Sompel, H.; Beit-Arie, O.: Generalizing the OpenURL framework beyond references to scholarly works : the Bison-Futé model (2001) 0.01
    0.0072010076 = product of:
      0.043206044 = sum of:
        0.043206044 = weight(_text_:web in 1223) [ClassicSimilarity], result of:
          0.043206044 = score(doc=1223,freq=6.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3122631 = fieldWeight in 1223, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1223)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper introduces the Bison-Futé model, a conceptual generalization of the OpenURL framework for open and context-sensitive reference linking in the web-based scholarly information environment. The Bison-Futé model is an abstract framework that identifies and defines components that are required to enable open and context-sensitive linking on the web in general. It is derived from experience gathered from the deployment of the OpenURL framework over the course of the past year. It is a generalization of the current OpenURL framework in several aspects. It aims to extend the scope of open and context-sensitive linking beyond web-based scholarly information. In addition, it offers a generalization of the manner in which referenced items -- as well as the context in which these items are referenced -- can be described for the specific purpose of open and context-sensitive linking. The Bison-Futé model is not suggested as a replacement of the OpenURL framework. On the contrary: it confirms the conceptual foundations of the OpenURL framework and, at the same time, it suggests directions and guidelines as to how the current OpenURL specifications could be extended to become applicable beyond the scholarly information environment.
  20. Jacobsen, G.: Webarchiving internationally : interoperability in the future? (2007) 0.01
    0.0070555173 = product of:
      0.042333104 = sum of:
        0.042333104 = weight(_text_:web in 699) [ClassicSimilarity], result of:
          0.042333104 = score(doc=699,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3059541 = fieldWeight in 699, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=699)
      0.16666667 = coord(1/6)
    
    Abstract
    Several national libraries are collecting parts of the Internet or planning to do so, but in order to render a complete impression of the Internet, web archives must be interoperable, enabling a user to make seamless searches. A questionnaire on this issue was sent to 95 national libraries. The answers show agreement with this goal and that web archiving is becoming more common. Partnering is a key ingredient in moving forward and a useful distinction is suggested in the labels curatorial partners (archives, museums) and technical partners (private companies, universities, other research institutions). Working with private, for-profit companies may also force national libraries to leave room for unorthodox thinking and experimenting. The biggest challenge right now is to make legal deposit, copyright and other legislation adapt to an Internet world, so we can preserve it and make it available to present and future generation.