Search (65 results, page 2 of 4)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  • × year_i:[2000 TO 2010}
  1. Doyle, B.: ¬The classification and evaluation of Content Management Systems (2003) 0.00
    0.0010469672 = product of:
      0.015704507 = sum of:
        0.015704507 = product of:
          0.031409014 = sum of:
            0.031409014 = weight(_text_:22 in 2871) [ClassicSimilarity], result of:
              0.031409014 = score(doc=2871,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.30952093 = fieldWeight in 2871, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2871)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    30. 7.2004 12:22:52
  2. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.00
    9.791998E-4 = product of:
      0.014687995 = sum of:
        0.014687995 = sum of:
          0.006835742 = weight(_text_:information in 2047) [ClassicSimilarity], result of:
            0.006835742 = score(doc=2047,freq=24.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.1343758 = fieldWeight in 2047, product of:
                4.8989797 = tf(freq=24.0), with freq of:
                  24.0 = termFreq=24.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.015625 = fieldNorm(doc=2047)
          0.0078522535 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
            0.0078522535 = score(doc=2047,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.07738023 = fieldWeight in 2047, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=2047)
      0.06666667 = coord(1/15)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    Rez. in: Knowledge organization 30(2003) no.1, S.40-42 (J.-E. Mai): "Introduction: This is a collection of papers presented at the National Seminar an Classification in the Digital Environment held in Bangalore, India, an August 9-11 2001. The collection contains 18 papers dealing with various issues related to knowledge organization and classification theory. The issue of transferring the knowledge, traditions, and theories of bibliographic classification to the digital environment is an important one, and I was excited to learn that proceedings from this seminar were available. Many of us experience frustration an a daily basis due to poorly constructed Web search mechanisms and Web directories. As a community devoted to making information easily accessible we have something to offer the Web community and a seminar an the topic was indeed much needed. Below are brief summaries of the 18 papers presented at the seminar. The order of the summaries follows the order of the papers in the proceedings. The titles of the paper are given in parentheses after the author's name. AHUJA and WESLEY (From "Subject" to "Need": Shift in Approach to Classifying Information an the Internet/Web) argue that traditional bibliographic classification systems fall in the digital environment. One problem is that bibliographic classification systems have been developed to organize library books an shelves and as such are unidimensional and tied to the paper-based environment. Another problem is that they are "subject" oriented in the sense that they assume a relatively stable universe of knowledge containing basic and fixed compartments of knowledge that can be identified and represented. Ahuja and Wesley suggest that classification in the digital environment should be need-oriented instead of subjectoriented ("One important link that binds knowledge and human being is his societal need. ... Hence, it will be ideal to organise knowledge based upon need instead of subject." (p. 10)).
    AHUJA and SATIJA (Relevance of Ranganathan's Classification Theory in the Age of Digital Libraries) note that traditional bibliographic classification systems have been applied in the digital environment with only limited success. They find that the "inherent flexibility of electronic manipulation of documents or their surrogates should allow a more organic approach to allocation of new subjects and appropriate linkages between subject hierarchies." (p. 18). Ahija and Satija also suggest that it is necessary to shift from a "subject" focus to a "need" focus when applying classification theory in the digital environment. They find Ranganathan's framework applicable in the digital environment. Although Ranganathan's focus is "subject oriented and hence emphasise the hierarchical and linear relationships" (p. 26), his framework "can be successfully adopted with certain modifications ... in the digital environment." (p. 26). SHAH and KUMAR (Model for System Unification of Geographical Schedules (Space Isolates)) report an a plan to develop a single schedule for geographical Subdivision that could be used across all classification systems. The authors argue that this is needed in order to facilitate interoperability in the digital environment. SAN SEGUNDO MANUEL (The Representation of Knowledge as a Symbolization of Productive Electronic Information) distills different approaches and definitions of the term "representation" as it relates to representation of knowledge in the library and information science literature and field. SHARADA (Linguistic and Document Classification: Paradigmatic Merger Possibilities) suggests the development of a universal indexing language. The foundation for the universal indexing language is Chomsky's Minimalist Program and Ranganathan's analytico-synthetic classification theory; Acording to the author, based an these approaches, it "should not be a problem" (p. 62) to develop a universal indexing language.
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
    PARAMESWARAN (Classification and Indexing: Impact of Classification Theory an PRECIS) reviews the PRECIS system and finds that "it Gould not escape from the impact of the theory of classification" (p. 131). The author further argues that the purpose of classification and subject indexing is the same and that both approaches depends an syntax. This leads to the conclusion that "there is an absolute syntax as the Indian theory of classification points out" (p. 131). SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 1. SA TSAN- A Computer Based Learning Package) and SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 2. Semi-Automatic Synthesis of CC Numbers) present an application to automate classification using a facet classification system, in this Gase, the Colon Classification system. GAIKAIWARI (An Interactive Application for Faceted Classification Systems) presents an application, called SRR, for managing and using a faceted classification scheme in a digital environment. IYER (Use of Instructional Technology to Support Traditional Classroom Learning: A Case Study) describes a course an "Information and Knowledge Organization" that she teaches at the University at Albany (SUNY). The course is a conceptual course that introduces the student to various aspects of knowledge organization. GOPINATH (Universal Classification: How can it be used?) lists fifteen uses of universal classifications and discusses the entities of a number of disciplines. GOPINATH (Knowledge Classification: The Theory of Classification) briefly reviews the foundations for research in automatic classification, summarizes the history of classification, and places Ranganathan's thought in the history of classification.
    Discussion The proceedings of the National Seminar an Classification in the Digital Environment give some insights. However, the depth of analysis and discussion is very uneven across the papers. Some of the papers have substantive research content while others appear to be notes used in the oral presentation. The treatments of the topics are very general in nature. Some papers have a very limited list of references while others have no bibliography. No index has been provided. The transfer of bibliographic knowledge organization theory to the digital environment is an important topic. However, as the papers at this conference have shown, it is also a difficult task. Of the 18 papers presented at this seminar an classification in the digital environment, only 4-5 papers actually deal directly with this important topic. The remaining papers deal with issues that are more or less relevant to classification in the digital environment without explicitly discussing the relation. The reason could be that the authors take up issues in knowledge organization that still need to be investigated and clarified before their application in the digital environment can be considered. Nonetheless, one wishes that the knowledge organization community would discuss the application of classification theory in the digital environment in greater detail. It is obvious from the comparisons of the classificatory structures of bibliographic classification systems and Web directories that these are different and that they probably should be different, since they serve different purposes. Interesting questions in the transformation of bibliographic classification theories to the digital environment are: "Given the existing principles in bibliographic knowledge organization, what are the optimum principles for organization of information, irrespectively of context?" and "What are the fundamental theoretical and practical principles for the construction of Web directories?" Unfortunately, the papers presented at this seminar do not attempt to answer or discuss these questions."
  3. Ferris, A.M.: If you buy it, will they use it? : a case study on the use of Classification web (2006) 0.00
    9.1609627E-4 = product of:
      0.013741443 = sum of:
        0.013741443 = product of:
          0.027482886 = sum of:
            0.027482886 = weight(_text_:22 in 88) [ClassicSimilarity], result of:
              0.027482886 = score(doc=88,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2708308 = fieldWeight in 88, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=88)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    10. 9.2000 17:38:22
  4. Oberhauser, O.: Praktische Lösungen für lokale Systematiken (2) : Ein einfaches Interface für den Online-Katalog (2007) 0.00
    8.896776E-4 = product of:
      0.013345163 = sum of:
        0.013345163 = weight(_text_:und in 724) [ClassicSimilarity], result of:
          0.013345163 = score(doc=724,freq=4.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.20778441 = fieldWeight in 724, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=724)
      0.06666667 = coord(1/15)
    
    Abstract
    Der Beitrag berichtet über die Erstellung eines hierarchischen Browse- und Abfrage-Interfaces für die lokale Systematik der Bibliothek der Sigmund Freud Privatstiftung (Wien), deren Online-Katalog an der Zentrale des Österreichischen Bibliothekenverbundes (OBVSG) unter Aleph 500 geführt wird. Da dieses System selbst keinerlei Features für die klassifikatorische Recherche vorsieht, wurden 25 HTLM-Seiten in den OPAC integriert, die eine hierarchische Navigation auf den drei Ebenen der Systematik ermöglichen. Mittels eines wöchentlich automatisch eingesetzten Perl-Programms wird dabei auch angezeigt, mit welchen Treffermengen in der jeweiligen Klasse bzw. den zugehörigen Unterklassen (in etwa) zu rechnen ist; diese Anzeige ist ausserdem mit der unmittelbaren Suche nach den betreffenden Titeln verlinkt. Da vonseiten der Bibliothek lediglich die Notationen katalogisiert werden, erfolgt bei der Titel-Vollanzeige mittels einer JavaScript-basierten Umnutzung der Aleph-Funktion "Suchdienste" ebenfalls ein Link auf das hierarchische Interface, um die Bedeutung der jeweiligen Notation im systematischen Kontext zu veranschaulichen.
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 60(2007) H.3, S.40-47
  5. Schallier, W.: Why organize information if you can find it? : UDC and libraries in an Internet world (2007) 0.00
    4.6511332E-4 = product of:
      0.0069766995 = sum of:
        0.0069766995 = product of:
          0.013953399 = sum of:
            0.013953399 = weight(_text_:information in 549) [ClassicSimilarity], result of:
              0.013953399 = score(doc=549,freq=16.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27429342 = fieldWeight in 549, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=549)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The Belgians Otlet and LaFontaine created the Universal Decimal Classification in order to collect and organize the world's knowledge. This happened in an age when information was almost exclusively made available by libraries. Since the internet, the quantity of information outside libraries is enormous and keeps growing every day. The internet is accessible to anybody, it is fundamentally unorganized and its content changes constantly. Collecting and organizing the world's knowledge seem to have become an impossible ambition. Perhaps it is even unnecessary, since search engines make information retrievable now. And why would we organize information if we can find it? So what will be the role of UDC and libraries in this internet environment? Libraries can still play a role as a major information provider, if they adapt fully to the expectations of a modern end user. The design and the functionalities of online catalogues should allow maximal accessibility, usability and active participation of the end user in the internet environment. Metadata, like UDC, should maximize the visibility of information, enrich it and invite the end user to assign metadata himself.
    Content
    Beitrag anlässlich des 'UDC Seminar: Information Access for the Global Community, The Hague, 4-5 June 2007'. - http://www.udcc.org/seminar07/presentations/schallier.pdf.
  6. Hjoerland, B.; Kyllesbech Nielsen, L.: Subject access points in electronic retrieval (2001) 0.00
    4.604387E-4 = product of:
      0.00690658 = sum of:
        0.00690658 = product of:
          0.01381316 = sum of:
            0.01381316 = weight(_text_:information in 3826) [ClassicSimilarity], result of:
              0.01381316 = score(doc=3826,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27153665 = fieldWeight in 3826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3826)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Annual review of information science and technology. 35(2001), S.249-298
  7. Tunkelang, D.: Faceted search (2009) 0.00
    4.5571616E-4 = product of:
      0.006835742 = sum of:
        0.006835742 = product of:
          0.013671484 = sum of:
            0.013671484 = weight(_text_:information in 26) [ClassicSimilarity], result of:
              0.013671484 = score(doc=26,freq=24.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2687516 = fieldWeight in 26, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=26)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.
    Content
    Table of Contents: I. Key Concepts / Introduction: What Are Facets? / Information Retrieval / Faceted Information Retrieval / II. Research and Practice / Academic Research / Commercial Applications / III. Practical Concerns / Back-End Concerns / Front-End Concerns / Conclusion / Glossary
    RSWK
    Information Retrieval
    Series
    Synthesis lectures on information concepts, retrieval & services; 5
    Subject
    Information Retrieval
  8. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.00
    4.4124527E-4 = product of:
      0.0066186786 = sum of:
        0.0066186786 = product of:
          0.013237357 = sum of:
            0.013237357 = weight(_text_:information in 831) [ClassicSimilarity], result of:
              0.013237357 = score(doc=831,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2602176 = fieldWeight in 831, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=831)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  9. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.00
    3.946617E-4 = product of:
      0.0059199254 = sum of:
        0.0059199254 = product of:
          0.011839851 = sum of:
            0.011839851 = weight(_text_:information in 2643) [ClassicSimilarity], result of:
              0.011839851 = score(doc=2643,freq=18.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274568 = fieldWeight in 2643, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  10. Dumais, S.; Chen, H.: Hierarchical classification of Web content (2000) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 492) [ClassicSimilarity], result of:
              0.011839852 = score(doc=492,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 492, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=492)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Proceedings of ACM SIGIR 23rd International Conference on Research and Development in Information Retrieval. Ed. by N.J. Belkin, P. Ingwersen u. M.K. Leong
  11. Lee, H.-L.; Olson, H.A.: Hierarchical navigation : an exploration of Yahoo! directories (2005) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 3991) [ClassicSimilarity], result of:
              0.011839852 = score(doc=3991,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 3991, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3991)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Although researchers have theorized the critical importance of classification in the organization of information, the classification approach seems to have given way to the alphabetical subject approach in retrieval tools widely used in libraries, and research an how users utilize classification or classification-like arrangements in information seeking has been scant. To better understand whether searchers consider classificatory structures a viable alternative to information retrieval, this article reports an a study of how 24 library and information science students used Yahoo! directories, a popular search service resembling classification, in completing an assigned simple task. Several issues emerged from the students' reporting of their search process and a comparison between hierarchical navigation and keyword searching: citation order of facets, precision vs. recall, and other factors influencing searchers' successes and preferences. The latter included search expertise, knowledge of the discipline, and time required to complete the search. Without a definitive conclusion, we suggest a number of directoons for further research.
  12. Wheatley, A.: Subject trees on the Internet : a new role for bibliographic classification? (2000) 0.00
    3.7209064E-4 = product of:
      0.0055813594 = sum of:
        0.0055813594 = product of:
          0.011162719 = sum of:
            0.011162719 = weight(_text_:information in 6108) [ClassicSimilarity], result of:
              0.011162719 = score(doc=6108,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.21943474 = fieldWeight in 6108, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6108)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Internet information retrieval is largely the preserve of search engines and the even more popular subject trees. Subject trees have adapted principles of conventional bibliographic classification for structuring hierarchic browsing interfaces, thus providing easily used pathways to their selected resources. This combination of browsing and selectivity is especially valuable to untrained users. For the forseeable future, it appears that subject trees will remain the Internet's only practicable use of classificatory methods for information retrieval
  13. Louie, A.J.; Maddox, E.L.; Washington, W.: Using faceted classification to provide structure for information architecture (2003) 0.00
    3.4178712E-4 = product of:
      0.0051268064 = sum of:
        0.0051268064 = product of:
          0.010253613 = sum of:
            0.010253613 = weight(_text_:information in 2471) [ClassicSimilarity], result of:
              0.010253613 = score(doc=2471,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.20156369 = fieldWeight in 2471, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2471)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This is a short, but very thorough and very interesting, report on how the writers built a faceted classification for some legal information and used it to structure a web site with navigation and searching. There is a good summary of why facets work well and how they fit into bibliographic control in general. The last section is about their implementation of a web site for the Washington State Bar Association's Council for Legal Public Education. Their classification uses three facets: Purpose (the general aim of the document, e.g. Resources for K-12 Teachers), Topic (the subject of the document), and Type (the legal format of the document). See Example Web Sites, below, for a discussion of the site and a problem with its design.
    Footnote
    Paper presented at the ASIS&T 2003 Information Architecture Summit, Portland, OR, 21-23 March 2003.
  14. Hennecke, J.: Workshop DDC and Knowledge Organization in the Digital Library (2000) 0.00
    3.2888478E-4 = product of:
      0.0049332716 = sum of:
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 4742) [ClassicSimilarity], result of:
              0.009866543 = score(doc=4742,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 4742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4742)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Theme
    Information Gateway
  15. Hickey, T.B.; Vizine-Goetz, D.: ¬The Role of Classification in CORC (2001) 0.00
    3.2888478E-4 = product of:
      0.0049332716 = sum of:
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 1448) [ClassicSimilarity], result of:
              0.009866543 = score(doc=1448,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 1448, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1448)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Theme
    Information Gateway
  16. LaBarre, K.; Cochrane, P.A.: Facet analysis as a knowledge management tool on the Internet (2006) 0.00
    3.2888478E-4 = product of:
      0.0049332716 = sum of:
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 1489) [ClassicSimilarity], result of:
              0.009866543 = score(doc=1489,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 1489, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1489)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In 2001, a group of information architects involved in designing websites, and knowledge management specialists involved in creating access to corporate knowledge bases appeared to have re-discovered facet analysis and faceted classification. These groups have been instrumental in creating new and different ways of handling digital content of the Internet. Some of these practitioners explicitly use the forms and language of facet analysis and faceted classification, while others seem to do so implicitly. Following a brief overview of the work and discussions on facets and faceted classification in recent years, we focus on our observations about new information resources which seem more in line with the Fourth law of Library Science ("Save the time of the reader") than most library OPACs today. These new developments on the Internet point to a partial grasp of a disciplined approach to subject access. This is where Ranganathan and Neelameghan's approach needs to be reviewed for the new audience of information system designers. A report on the work undertaken by us forms a principal part of this paper.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
  17. LaBarre, K.: Adventures in faceted classification: a brave new world or a world of confusion? (2004) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 2634) [ClassicSimilarity], result of:
              0.009767379 = score(doc=2634,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 2634, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2634)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Theme
    Information Gateway
  18. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 232) [ClassicSimilarity], result of:
              0.009767379 = score(doc=232,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
  19. Slavic-Overfield, A.: Classification management and use in a networked environment : the case of the Universal Decimal Classification (2005) 0.00
    2.941635E-4 = product of:
      0.004412452 = sum of:
        0.004412452 = product of:
          0.008824904 = sum of:
            0.008824904 = weight(_text_:information in 2191) [ClassicSimilarity], result of:
              0.008824904 = score(doc=2191,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1734784 = fieldWeight in 2191, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2191)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In the Internet information space, advanced information retrieval (IR) methods and automatic text processing are used in conjunction with traditional knowledge organization systems (KOS). New information technology provides a platform for better KOS publishing, exploitation and sharing both for human and machine use. Networked KOS services are now being planned and developed as powerful tools for resource discovery. They will enable automatic contextualisation, interpretation and query matching to different indexing languages. The Semantic Web promises to be an environment in which the quality of semantic relationships in bibliographic classification systems can be fully exploited. Their use in the networked environment is, however, limited by the fact that they are not prepared or made available for advanced machine processing. The UDC was chosen for this research because of its widespread use and its long-term presence in online information retrieval systems. It was also the first system to be used for the automatic classification of Internet resources, and the first to be made available as a classification tool on the Web. The objective of this research is to establish the advantages of using UDC for information retrieval in a networked environment, to highlight the problems of automation and classification exchange, and to offer possible solutions. The first research question was is there enough evidence of the use of classification on the Internet to justify further development with this particular environment in mind? The second question is what are the automation requirements for the full exploitation of UDC and its exchange? The third question is which areas are in need of improvement and what specific recommendations can be made for implementing the UDC in a networked environment? A summary of changes required in the management and development of the UDC to facilitate its full adaptation for future use is drawn from this analysis.
  20. LaBarre, K.: ¬A multi faceted view : use of facet analysis in the practice of website organization and access (2006) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 257) [ClassicSimilarity], result of:
              0.008544678 = score(doc=257,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 257, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=257)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In 2001, information architects and knowledge management specialists charged with designing websites and access to corporate knowledge bases seemingly re-discovered a legacy form of information organization and access: faceted analytico-synthetic theory (FAST). Instrumental in creating new and different ways for people to engage with the digital content of the Web, the members of this group have clearly recognized that faceted approaches have the potential to improve access to information on the web. Some of these practitioners explicitly use the forms and language of FAST, while others seem to mimic the forms implicitly (Adkisson, 2003). The focus of this ongoing research study is two-fold. First, access and organizational structures in a stratified random sample of 200 DMOZ websites were examined for evidence of the use of FAST. Second, in the context of unstructured interviews, the understanding and use of FAST among a group of eighteen practitioners is uncovered. This is a preliminary report of the website component capture and interview phases of this research study. Future work will involve formalizing a set of feature guidelines drawn from the initial phases of this research study. Preliminary observations will be drawn from the first phase of this study.

Languages

  • e 50
  • d 15

Types

  • a 54
  • el 8
  • m 3
  • s 2
  • x 2
  • More… Less…