Search (67 results, page 1 of 4)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Robbio, A. de; Maguolo, D.; Marini, A.: Scientific and general subject classifications in the digital world (2001) 0.06
    0.05909822 = product of:
      0.13789585 = sum of:
        0.039941736 = weight(_text_:digital in 2) [ClassicSimilarity], result of:
          0.039941736 = score(doc=2,freq=4.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.2465345 = fieldWeight in 2, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=2)
        0.03522524 = weight(_text_:techniques in 2) [ClassicSimilarity], result of:
          0.03522524 = score(doc=2,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.19468555 = fieldWeight in 2, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=2)
        0.06272889 = product of:
          0.12545778 = sum of:
            0.12545778 = weight(_text_:mathematics in 2) [ClassicSimilarity], result of:
              0.12545778 = score(doc=2,freq=6.0), product of:
                0.25945482 = queryWeight, product of:
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.04107254 = queryNorm
                0.48354384 = fieldWeight in 2, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    In the present work we discuss opportunities, problems, tools and techniques encountered when interconnecting discipline-specific subject classifications, primarily organized as search devices in bibliographic databases, with general classifications originally devised for book shelving in public libraries. We first state the fundamental distinction between topical (or subject) classifications and object classifications. Then we trace the structural limitations that have constrained subject classifications since their library origins, and the devices that were used to overcome the gap with genuine knowledge representation. After recalling some general notions on structure, dynamics and interferences of subject classifications and of the objects they refer to, we sketch a synthetic overview on discipline-specific classifications in Mathematics, Computing and Physics, on one hand, and on general classifications on the other. In this setting we present The Scientific Classifications Page, which collects groups of Web pages produced by a pool of software tools for developing hypertextual presentations of single or paired subject classifications from sequential source files, as well as facilities for gathering information from KWIC lists of classification descriptions. Further we propose a concept-oriented methodology for interconnecting subject classifications, with the concrete support of a relational analysis of the whole Mathematics Subject Classification through its evolution since 1959. Finally, we recall a very basic method for interconnection provided by coreference in bibliographic records among index elements from different systems, and point out the advantages of establishing the conditions of a more widespread application of such a method. A part of these contents was presented under the title Mathematics Subject Classification and related Classifications in the Digital World at the Eighth International Conference Crimea 2001, "Libraries and Associations in the Transient World: New Technologies and New Forms of Cooperation", Sudak, Ukraine, June 9-17, 2001, in a special session on electronic libraries, electronic publishing and electronic information in science chaired by Bernd Wegner, Editor-in-Chief of Zentralblatt MATH.
  2. Kent, R.E.: Organizing conceptual knowledge online : metadata interoperability and faceted classification (1998) 0.06
    0.05707561 = product of:
      0.13317642 = sum of:
        0.05205557 = weight(_text_:processing in 57) [ClassicSimilarity], result of:
          0.05205557 = score(doc=57,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.3130829 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0546875 = fieldNorm(doc=57)
        0.06164417 = weight(_text_:techniques in 57) [ClassicSimilarity], result of:
          0.06164417 = score(doc=57,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.3406997 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0546875 = fieldNorm(doc=57)
        0.019476667 = product of:
          0.038953334 = sum of:
            0.038953334 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.038953334 = score(doc=57,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.2708308 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    Conceptual Knowledge Markup Language (CKML), an application of XML, is a new standard being promoted for the specification of online conceptual knowledge (Kent and Shrivastava, 1998). CKML follows the philosophy of Conceptual Knowledge Processing (Wille, 1982), a principled approach to knowledge representation and data analysis, which advocates the development of methodologies and techniques to support people in their rational thinking, judgement and actions. CKML was developed and is being used in the WAVE networked information discovery and retrieval system (Kent and Neuss, 1994) as a standard for the specification of conceptual knowledge
    Date
    30.12.2001 16:22:41
  3. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.04
    0.03758349 = product of:
      0.1315422 = sum of:
        0.06989804 = weight(_text_:digital in 232) [ClassicSimilarity], result of:
          0.06989804 = score(doc=232,freq=4.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.43143538 = fieldWeight in 232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
        0.06164417 = weight(_text_:techniques in 232) [ClassicSimilarity], result of:
          0.06164417 = score(doc=232,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.3406997 = fieldWeight in 232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
  4. Dack, D.: Australian attends conference on Dewey (1989) 0.03
    0.02659839 = product of:
      0.093094364 = sum of:
        0.0736177 = weight(_text_:processing in 2509) [ClassicSimilarity], result of:
          0.0736177 = score(doc=2509,freq=4.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.4427661 = fieldWeight in 2509, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2509)
        0.019476667 = product of:
          0.038953334 = sum of:
            0.038953334 = weight(_text_:22 in 2509) [ClassicSimilarity], result of:
              0.038953334 = score(doc=2509,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.2708308 = fieldWeight in 2509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2509)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Edited version of a report to the Australian Library and Information Association on the Conference on classification theory in the computer age, Albany, New York, 18-19 Nov 88, and on the meeting of the Dewey Editorial Policy Committee which preceded it. The focus of the Editorial Policy Committee Meeting lay in the following areas: browsing; potential for improved subject access; system design; potential conflict between shelf location and information retrieval; and users. At the Conference on classification theory in the computer age the following papers were presented: Applications of artificial intelligence to bibliographic classification, by Irene Travis; Automation and classification, By Elaine Svenonious; Subject classification and language processing for retrieval in large data bases, by Diana Scott; Implications for information processing, by Carol Mandel; and implications for information science education, by Richard Halsey.
    Date
    8.11.1995 11:52:22
  5. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.02
    0.021355966 = product of:
      0.07474588 = sum of:
        0.069181114 = weight(_text_:digital in 2047) [ClassicSimilarity], result of:
          0.069181114 = score(doc=2047,freq=48.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.42701027 = fieldWeight in 2047, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.015625 = fieldNorm(doc=2047)
        0.005564762 = product of:
          0.011129524 = sum of:
            0.011129524 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
              0.011129524 = score(doc=2047,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.07738023 = fieldWeight in 2047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    Rez. in: Knowledge organization 30(2003) no.1, S.40-42 (J.-E. Mai): "Introduction: This is a collection of papers presented at the National Seminar an Classification in the Digital Environment held in Bangalore, India, an August 9-11 2001. The collection contains 18 papers dealing with various issues related to knowledge organization and classification theory. The issue of transferring the knowledge, traditions, and theories of bibliographic classification to the digital environment is an important one, and I was excited to learn that proceedings from this seminar were available. Many of us experience frustration an a daily basis due to poorly constructed Web search mechanisms and Web directories. As a community devoted to making information easily accessible we have something to offer the Web community and a seminar an the topic was indeed much needed. Below are brief summaries of the 18 papers presented at the seminar. The order of the summaries follows the order of the papers in the proceedings. The titles of the paper are given in parentheses after the author's name. AHUJA and WESLEY (From "Subject" to "Need": Shift in Approach to Classifying Information an the Internet/Web) argue that traditional bibliographic classification systems fall in the digital environment. One problem is that bibliographic classification systems have been developed to organize library books an shelves and as such are unidimensional and tied to the paper-based environment. Another problem is that they are "subject" oriented in the sense that they assume a relatively stable universe of knowledge containing basic and fixed compartments of knowledge that can be identified and represented. Ahuja and Wesley suggest that classification in the digital environment should be need-oriented instead of subjectoriented ("One important link that binds knowledge and human being is his societal need. ... Hence, it will be ideal to organise knowledge based upon need instead of subject." (p. 10)).
    AHUJA and SATIJA (Relevance of Ranganathan's Classification Theory in the Age of Digital Libraries) note that traditional bibliographic classification systems have been applied in the digital environment with only limited success. They find that the "inherent flexibility of electronic manipulation of documents or their surrogates should allow a more organic approach to allocation of new subjects and appropriate linkages between subject hierarchies." (p. 18). Ahija and Satija also suggest that it is necessary to shift from a "subject" focus to a "need" focus when applying classification theory in the digital environment. They find Ranganathan's framework applicable in the digital environment. Although Ranganathan's focus is "subject oriented and hence emphasise the hierarchical and linear relationships" (p. 26), his framework "can be successfully adopted with certain modifications ... in the digital environment." (p. 26). SHAH and KUMAR (Model for System Unification of Geographical Schedules (Space Isolates)) report an a plan to develop a single schedule for geographical Subdivision that could be used across all classification systems. The authors argue that this is needed in order to facilitate interoperability in the digital environment. SAN SEGUNDO MANUEL (The Representation of Knowledge as a Symbolization of Productive Electronic Information) distills different approaches and definitions of the term "representation" as it relates to representation of knowledge in the library and information science literature and field. SHARADA (Linguistic and Document Classification: Paradigmatic Merger Possibilities) suggests the development of a universal indexing language. The foundation for the universal indexing language is Chomsky's Minimalist Program and Ranganathan's analytico-synthetic classification theory; Acording to the author, based an these approaches, it "should not be a problem" (p. 62) to develop a universal indexing language.
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
    PARAMESWARAN (Classification and Indexing: Impact of Classification Theory an PRECIS) reviews the PRECIS system and finds that "it Gould not escape from the impact of the theory of classification" (p. 131). The author further argues that the purpose of classification and subject indexing is the same and that both approaches depends an syntax. This leads to the conclusion that "there is an absolute syntax as the Indian theory of classification points out" (p. 131). SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 1. SA TSAN- A Computer Based Learning Package) and SATYAPAL and SANJIVINI SATYAPAL (Classifying Documents According to Postulational Approach: 2. Semi-Automatic Synthesis of CC Numbers) present an application to automate classification using a facet classification system, in this Gase, the Colon Classification system. GAIKAIWARI (An Interactive Application for Faceted Classification Systems) presents an application, called SRR, for managing and using a faceted classification scheme in a digital environment. IYER (Use of Instructional Technology to Support Traditional Classroom Learning: A Case Study) describes a course an "Information and Knowledge Organization" that she teaches at the University at Albany (SUNY). The course is a conceptual course that introduces the student to various aspects of knowledge organization. GOPINATH (Universal Classification: How can it be used?) lists fifteen uses of universal classifications and discusses the entities of a number of disciplines. GOPINATH (Knowledge Classification: The Theory of Classification) briefly reviews the foundations for research in automatic classification, summarizes the history of classification, and places Ranganathan's thought in the history of classification.
    Discussion The proceedings of the National Seminar an Classification in the Digital Environment give some insights. However, the depth of analysis and discussion is very uneven across the papers. Some of the papers have substantive research content while others appear to be notes used in the oral presentation. The treatments of the topics are very general in nature. Some papers have a very limited list of references while others have no bibliography. No index has been provided. The transfer of bibliographic knowledge organization theory to the digital environment is an important topic. However, as the papers at this conference have shown, it is also a difficult task. Of the 18 papers presented at this seminar an classification in the digital environment, only 4-5 papers actually deal directly with this important topic. The remaining papers deal with issues that are more or less relevant to classification in the digital environment without explicitly discussing the relation. The reason could be that the authors take up issues in knowledge organization that still need to be investigated and clarified before their application in the digital environment can be considered. Nonetheless, one wishes that the knowledge organization community would discuss the application of classification theory in the digital environment in greater detail. It is obvious from the comparisons of the classificatory structures of bibliographic classification systems and Web directories that these are different and that they probably should be different, since they serve different purposes. Interesting questions in the transformation of bibliographic classification theories to the digital environment are: "Given the existing principles in bibliographic knowledge organization, what are the optimum principles for organization of information, irrespectively of context?" and "What are the fundamental theoretical and practical principles for the construction of Web directories?" Unfortunately, the papers presented at this seminar do not attempt to answer or discuss these questions."
  6. Vizine-Goetz, D.: OCLC investigates using classification tools to organize Internet data (1998) 0.02
    0.020437783 = product of:
      0.071532235 = sum of:
        0.05205557 = weight(_text_:processing in 2342) [ClassicSimilarity], result of:
          0.05205557 = score(doc=2342,freq=2.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.3130829 = fieldWeight in 2342, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2342)
        0.019476667 = product of:
          0.038953334 = sum of:
            0.038953334 = weight(_text_:22 in 2342) [ClassicSimilarity], result of:
              0.038953334 = score(doc=2342,freq=2.0), product of:
                0.14382903 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04107254 = queryNorm
                0.2708308 = fieldWeight in 2342, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2342)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22. 9.1997 19:16:05
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  7. Dunsire, G.: Digital decimals : Dewey and online libraries (2008) 0.01
    0.013976698 = product of:
      0.09783688 = sum of:
        0.09783688 = weight(_text_:digital in 2164) [ClassicSimilarity], result of:
          0.09783688 = score(doc=2164,freq=6.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.60388374 = fieldWeight in 2164, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=2164)
      0.14285715 = coord(1/7)
    
    Abstract
    The paper discusses practical methods of apply DDC to digital library services arising from recent technical developments. These include the use of DDC summaries to create hierarchical browsing and tag cloud interfaces, the utility of DDC as a switching language between different subject heading and classification schemes, and the development of terminology servers for interoperability with digital libraries. The focus is on services based in Europe.
  8. Lin, Z.Y.: Classification practice and implications for subject directories of the Chinese language Web-based digital library (2000) 0.01
    0.012104175 = product of:
      0.084729224 = sum of:
        0.084729224 = weight(_text_:digital in 3438) [ClassicSimilarity], result of:
          0.084729224 = score(doc=3438,freq=2.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.52297866 = fieldWeight in 3438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.09375 = fieldNorm(doc=3438)
      0.14285715 = coord(1/7)
    
  9. Scott, D.S.: Subject classification and natural-language processing for retrieval in large databases (1989) 0.01
    0.012019216 = product of:
      0.08413451 = sum of:
        0.08413451 = weight(_text_:processing in 967) [ClassicSimilarity], result of:
          0.08413451 = score(doc=967,freq=4.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.5060184 = fieldWeight in 967, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0625 = fieldNorm(doc=967)
      0.14285715 = coord(1/7)
    
    Abstract
    New forms of man-machine interaction are becoming available that have great power for the delivery of information. But the scales of speed and capacity on which the computing machines operate demand new thoughts as to how information can be stored and retrieved. The objective of the discussion in this paper is to argue for a combination of natural-language processing and subject classification to be able to meet the demands
  10. Oberhauser, O.: Implementierung und Parametrisierung klassifikatorischer Recherchekomponenten im OPAC (2005) 0.01
    0.011836517 = product of:
      0.08285561 = sum of:
        0.08285561 = sum of:
          0.063378945 = weight(_text_:mathematics in 3353) [ClassicSimilarity], result of:
            0.063378945 = score(doc=3353,freq=2.0), product of:
              0.25945482 = queryWeight, product of:
                6.31699 = idf(docFreq=216, maxDocs=44218)
                0.04107254 = queryNorm
              0.24427739 = fieldWeight in 3353, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                6.31699 = idf(docFreq=216, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3353)
          0.019476667 = weight(_text_:22 in 3353) [ClassicSimilarity], result of:
            0.019476667 = score(doc=3353,freq=2.0), product of:
              0.14382903 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04107254 = queryNorm
              0.1354154 = fieldWeight in 3353, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3353)
      0.14285715 = coord(1/7)
    
    Abstract
    Das in den letzten Jahren wiedererwachte Interesse an der klassifikatorischen Erschließung und Recherche hat sich allem Anschein nach noch nicht ausreichend bis zu den Herstellern integrierter Bibliothekssysteme herumgesprochen. Wie wäre es sonst zu erklären, dass im OPAC-Modul eines führenden Systems wie Aleph 500 so gut wie keine Features für klassifikationsbasierte Recherchen zu erblicken sind? Tatsächlich finden wir heute einen im Vergleich zum einstigen System Bibos kaum veränderten Zustand vor: Notationen eines oder mehrerer Klassifikationssysteme können in einer durch MAB dafür bestimmten Kategorie (700, nebst Indikatoren) katalogisiert und dann recherchiert bzw. angezeigt werden. Doch welcher Benutzer weiß schon, was diese Notationen im einzelnen bedeuten? Wer macht sich die Mühe, dies selbst herauszufinden, um dann danach zu recherchieren? Hier liegt im wesentlich dasselbe Problem vor, das schon dem systematischen Zettelkatalog anhaftete und ihn zu einem zwar mühevoll erstellten, aber wenig genutzten Rechercheinstrument machte, das nur dann (zwangsläufig) angenommen wurde, wenn ein verbaler Sachkatalog fehlte. Nun könnte eingewandt werden, dass im Vergleich zu früher unter Aleph 500 wenigstens das Aufblättern von Indizes möglich sei, sodass im OPAC ein Index für die vergebenen Notationen angeboten werden kann (bzw. mehrere solche Indizes bei Verwendung von mehr als nur einem Klassifikationssystem). Gewiss, doch was bringt dem Uneingeweihten das Aufblättern des Notationsindex - außer einer alphabetischen Liste von kryptischen Codes? Weiter könnte man einwenden, dass es im Aleph-500-OPAC die so genannten Suchdienste ("services") gibt, mithilfe derer von bestimmten Elementen einer Vollanzeige hypertextuell weiternavigiert werden kann. Richtig, doch damit kann man bloß wiederum den Index aufblättern oder alle anderen Werke anzeigen lassen, die dieselbe Notationen - also einen Code, dessen Bedeutung meist unbekannt ist - aufweisen. Wie populär mag dieses Feature beim Publikum wohl sein? Ein anderer Einwand wäre der Hinweis auf das inzwischen vom Hersteller angebotene Thesaurus-Modul, das vermutlich auch für Klassifikationssysteme eingesetzt werden könnte. Doch wie viele Bibliotheken unseres Verbundes waren bisher bereit, für dieses Modul, das man eigentlich als Bestandteil des Basissystems erwarten könnte, gesondert zu bezahlen? Schließlich mag man noch einwenden, dass es im Gegensatz zur Bibos-Zeit nun die Möglichkeit gibt, Systematiken und Klassifikationen als Normdateien zu implementieren und diese beim Retrieval für verbale Einstiege in die klassifikatorische Recherche oder zumindest für die Veranschaulichung der Klassenbenennungen in der Vollanzeige zu nutzen. Korrekt - dies ist möglich und wurde sogar einst für die MSC (Mathematics Subject Classification, auch bekannt als "AMS-Klassifikation") versucht. Dieses Projekt, das noch unter der Systemversion 11.5 begonnen wurde, geriet jedoch nach einiger Zeit ins Stocken und fand bedauerlicherweise nie seinen Weg in die folgende Version (14.2). Mag auch zu hoffen sein, dass es unter der neuen Version 16 wieder weitergeführt werden kann, so weist dieses Beispiel doch auf die grundsätzliche Problematik des Normdatei-Ansatzes (zusätzlicher Aufwand, Kontinuität) hin. Zudem lohnt sich die Implementierung einer eigenen Normdatei 4 wohl nur bei einem größeren bzw. komplexen Klassifikationssystem, wogegen man im Falle kleinerer Systematiken kaum daran denken würde.
    Source
    Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 58(2005) H.1, S.22-37
  11. Aluri, R.D.; Kemp, A.; Boll, J.J.: Subject analysis in online catalogs (1991) 0.01
    0.010516814 = product of:
      0.0736177 = sum of:
        0.0736177 = weight(_text_:processing in 863) [ClassicSimilarity], result of:
          0.0736177 = score(doc=863,freq=4.0), product of:
            0.1662677 = queryWeight, product of:
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.04107254 = queryNorm
            0.4427661 = fieldWeight in 863, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.048147 = idf(docFreq=2097, maxDocs=44218)
              0.0546875 = fieldNorm(doc=863)
      0.14285715 = coord(1/7)
    
    LCSH
    Subject cataloguing / Data processing
    Subject
    Subject cataloguing / Data processing
  12. Hennecke, J.: Workshop DDC and Knowledge Organization in the Digital Library (2000) 0.01
    0.010086811 = product of:
      0.07060768 = sum of:
        0.07060768 = weight(_text_:digital in 4742) [ClassicSimilarity], result of:
          0.07060768 = score(doc=4742,freq=2.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.4358155 = fieldWeight in 4742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=4742)
      0.14285715 = coord(1/7)
    
  13. Broughton, V.; Lane, H.: ¬The Bliss Bibliographic Classification in action : moving from a special to a universal faceted classification via a digital platform (2004) 0.01
    0.010086811 = product of:
      0.07060768 = sum of:
        0.07060768 = weight(_text_:digital in 2633) [ClassicSimilarity], result of:
          0.07060768 = score(doc=2633,freq=8.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.4358155 = fieldWeight in 2633, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2633)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper examines the differences in the functional requirements of a faceted classification system when used in a conventional print-based environment (where the emphasis is on the browse function of the classification) as compared to its application to digital collections (where the retrieval function is paramount). The use of the second edition of Bliss's Bibliographic Classification (BC2) as a general classification for the physical organization of undergraduate collections in the University of Cambridge is described. The development of an online tool for indexing of digital resources using the Bliss terminologies is also described, and the advantages of facet analysis for data structuring and system syntax within the prototype tool are discussed. The move from the print-based environment to the digital makes different demands an both the content and the syntax of the classification, and while the conceptual structure remains similar, manipulation of the scheme and the process of content description can be markedly different.
  14. Trotter, R.: Electronic Dewey : the CD-ROM version of the Dewey Decimal Classification (1995) 0.01
    0.010064354 = product of:
      0.07045048 = sum of:
        0.07045048 = weight(_text_:techniques in 1726) [ClassicSimilarity], result of:
          0.07045048 = score(doc=1726,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.3893711 = fieldWeight in 1726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0625 = fieldNorm(doc=1726)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper describes the features of Electronic Dewey bringing out the ways in which it differs from the printed version of the Classification. The various search techniques available are discussed and the use of the DDC functions is considered. The paper concludes that while improvements could be made the CD-ROM heralds the electronic age of classification.
  15. Pollitt, A.S.: ¬The application of Dewey Classification in a view-based searching OPAC (1998) 0.01
    0.008895717 = product of:
      0.062270015 = sum of:
        0.062270015 = weight(_text_:techniques in 73) [ClassicSimilarity], result of:
          0.062270015 = score(doc=73,freq=4.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.34415868 = fieldWeight in 73, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=73)
      0.14285715 = coord(1/7)
    
    Abstract
    This paper examines issues relating to the use of the Dewey Decimal Classification (DDC) in a future development of view-based searching to Online Public Access Catalogues (OPAC). View-based searching systems, exercising the principles of fully faceted classification techniques for both bibliographic and corporate database retrieval applications, are now being applied to utilise Dewey concept hierarchies in a University OPAC. Issues of efficiency and effectiveness in the evolving organisation and classification of information within libraries are examined to explain why fully faceted classification schemes have yet to realise their full potential in libraries. The key to their application in OPACs lies in the use of faceted classification as pre-coordinated indexing and abandoning the single dimension relative ordering of books on shelves. The need to maintain a single relative physical position on a bookshelf is the major source of complexity in classification. Extensive latent benefits will be realised when systematic subject arrangements, providing alternative views onto OPACs, are coupled to view-based browser and search techniques. Time and effort will be saved, and effectiveness increased, as rapid access is provided to the most appropriate information to satisfy the needs of the user. A future for Dewey Classification divorced from its decimal notation is anticipated
  16. Walker, S.: Views on classification as a search tool on a computer (1991) 0.01
    0.008806311 = product of:
      0.06164417 = sum of:
        0.06164417 = weight(_text_:techniques in 4837) [ClassicSimilarity], result of:
          0.06164417 = score(doc=4837,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.3406997 = fieldWeight in 4837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4837)
      0.14285715 = coord(1/7)
    
    Abstract
    Classification numbers and shelf marks may be useful in online searching. Ways of using classification in online searching include: direct classification searching; use of classification as linking devices or pivots; and direct or indirect searching of classification schedules and indexes. Discusses each of these techniques, mainly in the context of library OPAC searching although they may be applied to other types of online retrieval systems. The use of classification numbers as pivots enabling online searchers to retrieve related references by means of automation searching of identical or related classification numbers is reviewed with reference to the OKAPI project; BLCMP project and the DDC online project
  17. Rocha, R.; Cobo, A.: Automatización de procesos de categorización jerárquica documental en las organizaciones (2010) 0.01
    0.008806311 = product of:
      0.06164417 = sum of:
        0.06164417 = weight(_text_:techniques in 4838) [ClassicSimilarity], result of:
          0.06164417 = score(doc=4838,freq=2.0), product of:
            0.18093403 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.04107254 = queryNorm
            0.3406997 = fieldWeight in 4838, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4838)
      0.14285715 = coord(1/7)
    
    Abstract
    In a global context characterized by the massive use of information technology and communications any organization needs to optimize the search and document management processes. In this paper an analysis of modern document management techniques and computational strategies with specialized language resources is presented and a model that can be used in automatic text categorization in the context of organizations is proposed.As a particular case we describe a classification system according to the taxonomy JEL (Journal of Economic Literature) and that makes use of multilingual glossaries for hierarchical classifications of scientific and technical documents related to the business functional areas.
  18. Broughton, V.: Faceted classification as a basis for knowledge organization in a digital environment : the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multi-dimensional knowledge structures (2001) 0.01
    0.008735436 = product of:
      0.061148047 = sum of:
        0.061148047 = weight(_text_:digital in 5895) [ClassicSimilarity], result of:
          0.061148047 = score(doc=5895,freq=6.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.37742734 = fieldWeight in 5895, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5895)
      0.14285715 = coord(1/7)
    
    Abstract
    Broughton is one of the key people working on the second edition of the Bliss Bibliographic Classification (BC2). Her article has a brief, informative history of facets, then discusses semantic vs. syntactic relationships, standard facets used by Ranganathan and the Classification Research Group, facet analysis and citation order, and how to build subject indexes out of faceted classifications, all with occasional reference to digital environments and hypertext, but never with any specifics. It concludes by saying of faceted classification that the "capacity which it has to create highly sophisticated structures for the accommodation of complex objects suggests that it is worth investigation as an organizational tool for digital materials, and that the results of such investigation would be knowledge structures of unparalleled utility and elegance." How to build them is left to the reader, but this article provides an excellent starting point. It includes an example that shows how general concepts can be applied to a small set of documents and subjects, and how terms can be adapted to suit the material and users
  19. Allen, R.B.: Navigating and searching in digital library catalogs (1994) 0.01
    0.008735436 = product of:
      0.061148047 = sum of:
        0.061148047 = weight(_text_:digital in 2414) [ClassicSimilarity], result of:
          0.061148047 = score(doc=2414,freq=6.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.37742734 = fieldWeight in 2414, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2414)
      0.14285715 = coord(1/7)
    
    Source
    Digital libraries: current issues ; selected papers / Digital Libraries Workshop DL '94, Newark, NJ, USA, May 19 - 20, 1994. Ed.: Nabil R. Adam
  20. Koch, T.; Vizine-Goetz, D.: DDC and knowledge organization in the digital library : Research and development. Demonstration pages (1999) 0.01
    0.008558944 = product of:
      0.059912607 = sum of:
        0.059912607 = weight(_text_:digital in 942) [ClassicSimilarity], result of:
          0.059912607 = score(doc=942,freq=4.0), product of:
            0.16201277 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.04107254 = queryNorm
            0.36980176 = fieldWeight in 942, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=942)
      0.14285715 = coord(1/7)
    
    Content
    1. Increased Importance of Knowledge Organization in Internet Services - 2. Quality Subject Service and the role of classification - 3. Developing the DDC into a knowledge organization instrument for the digital library. OCLC site - 4. DESIRE's Barefoot Solutions of Automatic Classification - 5. Advanced Classification Solutions in DESIRE and CORC - 6. Future directions of research and development - 7. General references

Years

Languages

  • e 57
  • d 8
  • es 1
  • pt 1
  • More… Less…

Types

  • a 56
  • el 9
  • m 4
  • s 3
  • x 1
  • More… Less…