Search (19 results, page 1 of 1)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × type_ss:"a"
  • × year_i:[1990 TO 2000}
  1. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.06
    0.05908383 = product of:
      0.11816766 = sum of:
        0.11816766 = sum of:
          0.061605897 = weight(_text_:systems in 7242) [ClassicSimilarity], result of:
            0.061605897 = score(doc=7242,freq=4.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.38414678 = fieldWeight in 7242, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
          0.056561764 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
            0.056561764 = score(doc=7242,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.30952093 = fieldWeight in 7242, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
      0.5 = coord(1/2)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
  2. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.04
    0.043804124 = product of:
      0.08760825 = sum of:
        0.08760825 = sum of:
          0.038116705 = weight(_text_:systems in 7241) [ClassicSimilarity], result of:
            0.038116705 = score(doc=7241,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.23767869 = fieldWeight in 7241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
          0.049491543 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
            0.049491543 = score(doc=7241,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.2708308 = fieldWeight in 7241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  3. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.03
    0.03128866 = product of:
      0.06257732 = sum of:
        0.06257732 = sum of:
          0.027226217 = weight(_text_:systems in 5562) [ClassicSimilarity], result of:
            0.027226217 = score(doc=5562,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.1697705 = fieldWeight in 5562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
          0.0353511 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
            0.0353511 = score(doc=5562,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.19345059 = fieldWeight in 5562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
      0.5 = coord(1/2)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  4. Midorikawa, N.: ¬A discussion of the concepts of facets from the viewpoint of the structures of classification systems (1997) 0.02
    0.02161014 = product of:
      0.04322028 = sum of:
        0.04322028 = product of:
          0.08644056 = sum of:
            0.08644056 = weight(_text_:systems in 1806) [ClassicSimilarity], result of:
              0.08644056 = score(doc=1806,freq=14.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.5390046 = fieldWeight in 1806, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1806)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    2 concepts of facets have been used in studies of classification systems: one for systems which take hierarchical structure and the other for systems which take multidimensional structure. Both correspond to 'principles of division'. The concepts of facets in multidimensional structure systems is used for addressing a subject from many aspects so should equate to the broadest principle of division in order to grasp a multiplicity of aspects. The concept of facets used in hierarchical systems addresses only the significance of a coherent set of items. This concept is not distinguished from the principle of division and there is no purpose in introducing a concept of facets into hierarchical systems in addition to the principle of division
  5. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.02
    0.021210661 = product of:
      0.042421322 = sum of:
        0.042421322 = product of:
          0.084842645 = sum of:
            0.084842645 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
              0.084842645 = score(doc=6404,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.46428138 = fieldWeight in 6404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  6. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.02
    0.021210661 = product of:
      0.042421322 = sum of:
        0.042421322 = product of:
          0.084842645 = sum of:
            0.084842645 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
              0.084842645 = score(doc=3773,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.46428138 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3773)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  7. Mirorikawa, N.: Structures of classification systems : hierarchical and multidimensional (1996) 0.02
    0.019058352 = product of:
      0.038116705 = sum of:
        0.038116705 = product of:
          0.07623341 = sum of:
            0.07623341 = weight(_text_:systems in 6583) [ClassicSimilarity], result of:
              0.07623341 = score(doc=6583,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.47535738 = fieldWeight in 6583, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6583)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Considers classification systems from a structural point of view. Distinguishes between 2 kinds of methods of categorization of classification systems: the first categorized by structure, either hierarchical or multidimensional; and the second by style of expression, either enumerative or sythetic. Identifies 4 leading classification systems according to their structures: DDC, LCC, UDC and Colon Classification. Focuses on DDC referring to 2 interpretatives of its structure, one of which is hierarchical and the other is partially multidimensional. Also relates this to the matter of interpretation of the notation '0', interpreted in one instance as 'generalities', and in another as 'coordination sign'
  8. Curras, E.: Ranganathan's classification theories under the systems science postulates (1992) 0.02
    0.018862877 = product of:
      0.037725754 = sum of:
        0.037725754 = product of:
          0.07545151 = sum of:
            0.07545151 = weight(_text_:systems in 6993) [ClassicSimilarity], result of:
              0.07545151 = score(doc=6993,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4704818 = fieldWeight in 6993, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6993)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes the basic ideas concerning system science and discusses S.R. Ranganathan's ideas about concepts of 'universe of ideas', 'universe of science', 'universe of knowledge' and 'universe of classification'. Examines the principles, canons and postulates underlying Colon Classification. Discusses the structure of Colon Classification. Points out that the ideas of Ranganathan conform to the concept 'unity of science' and concludes that the principles of systems science or systems thinking are helpful in understanding the theory of classification formulated by Ranganathan
  9. Zackland, M.; Fontaine, D.: Systematic building of conceptual classification systems with C-KAT (1996) 0.02
    0.016505018 = product of:
      0.033010036 = sum of:
        0.033010036 = product of:
          0.06602007 = sum of:
            0.06602007 = weight(_text_:systems in 5145) [ClassicSimilarity], result of:
              0.06602007 = score(doc=5145,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.41167158 = fieldWeight in 5145, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5145)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    C-KAT is a method and a tool which supports the design of feature oriented classification systems for knowlegde based systems. It uses a specialized Heuristic Classification conceptual model named 'classification by structural shift' which sees the classification process as the matching of different classifications of the same set of objects or situations organized around different structural principles. To manage the complexity induced by the cross-product, C-KAT supports the use of a leastcommittment strategy which applies in a context of constraint-directed reasoning. Presents this method using an example from the field of industrial fire insurance
  10. Beghtol, C.: General classification systems : structural principles for multidisciplinary specification (1998) 0.02
    0.01633573 = product of:
      0.03267146 = sum of:
        0.03267146 = product of:
          0.06534292 = sum of:
            0.06534292 = weight(_text_:systems in 44) [ClassicSimilarity], result of:
              0.06534292 = score(doc=44,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4074492 = fieldWeight in 44, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=44)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this century, knowledge creation, production, dissemination and use have changed profoundly. Intellectual and physical barriers have been substantially reduced by the rise of multidisciplinarity and by the influence of computerization, particularly by the spread of the World Wide Web (WWW). Bibliographic classification systems need to respond to this situation. Three possible strategic responses are described: 1) adopting an existing system; 2) adapting an existing system; and 3) finding new structural principles for classification systems. Examples of these three responses are given. An extended example of the third option uses the knowledge outline in the Spectrum of Britannica Online to suggest a theory of "viewpoint warrant" that could be used to incorporate differing perspectives into general classification systems
  11. Minnigh, L.D.: Chaos in informatie, onderwerpsontsluiting en kennisoverdracht : de rol van de wetenschappelijke bibliotheek (1993) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 6606) [ClassicSimilarity], result of:
              0.061605897 = score(doc=6606,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 6606, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Existing classification systems require constant expansion to accomodate new subject fields, while subject indexing techniques fail to display the relationship of subjects. Relational databases are currently being developed which will guide users through the differing levels of subjects, using the 'cartography of science'. Such developments will enable librarians to play a more interactive role in information retrieval and will have far-reaching consequences on the design of subject-indexing systems
  12. Dahlberg, I.: DIN 32705: the German standard on classification systems : a critical appraisal (1992) 0.01
    0.014147157 = product of:
      0.028294314 = sum of:
        0.028294314 = product of:
          0.056588627 = sum of:
            0.056588627 = weight(_text_:systems in 2669) [ClassicSimilarity], result of:
              0.056588627 = score(doc=2669,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.35286134 = fieldWeight in 2669, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2669)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The German standard on the construction and further development of classification systems is introduced with its background. The contents of its 8 chapters is described. A critical appraisal considers (1) the fact that the standard does not openly deal with the optimal form of CS, viz. faceted CS, but treats them as one possibility among others, although the authors seem to have had this kind in mind when recommending the section on steps of CS development and other sections of the standard; (2) that the standard does not give any recommendation on the computerization of the necessary activities in establishing CS; and (3) that a convergence of CS and thesauri in the form of faceted CS and faceted thesauri has not been taken into consideration. - Concludingly some doubts are raised whether a standard would be the best medium to provide recommendations or guidelines for the construction of such systems. More adequate ways for this should be explored
  13. Dahlberg, I.: Classification structure principles : Investigations, experiences, conclusions (1998) 0.01
    0.014147157 = product of:
      0.028294314 = sum of:
        0.028294314 = product of:
          0.056588627 = sum of:
            0.056588627 = weight(_text_:systems in 47) [ClassicSimilarity], result of:
              0.056588627 = score(doc=47,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.35286134 = fieldWeight in 47, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=47)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For the purpose of establishing compatibility between the major universal classification systems in use, their structure principles were investigated and crucial points of difficulty for this undertaking were looked for, in order to relate the guiding classes, e.g. of the DDC, UDC, LCC, BC, and CC, to the subject groups of the ICC. With the help of a matrix into whose fields all subject groups of the ICC were inserted, it was not difficult at all to enter the notations of the universal classification systems mentioned. However, differences in terms of level of subdivision were found, as well as differences of occurrences. Most, though not all, of the fields of the ICC matrix could be completely filled with the corresponding notations of the other systems. Through this matrix, a first table of some 81 equivalences was established on which further work regarding the next levels of subject fields can be based
  14. Belayche, C.: ¬A propos de la classification de Dewey (1997) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.056561764 = score(doc=1171,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Bulletin d'informations de l'Association des Bibliothecaires Francais. 1997, no.175, S.22-23
  15. Hurt, C.D.: Classification and subject analysis : looking to the future at a distance (1997) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 6929) [ClassicSimilarity], result of:
              0.043561947 = score(doc=6929,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 6929, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Classic classification schemes are uni-dimensional, with few exceptions. One of the challenges of distance education and new learning strategies is that the proliferation of course work defies the traditional categorization. The rigidity of most present classification schemes does not mesh well with the burgeoning fluidity of the academic environment. One solution is a return to a largely forgotten area of study - classification theory. Some suggestions for exploration are nonmonotonic logic systems, neural network models, and non-library models.
  16. Kwasnik, B.H.: ¬The role of classification in knowledge representation (1999) 0.01
    0.010605331 = product of:
      0.021210661 = sum of:
        0.021210661 = product of:
          0.042421322 = sum of:
            0.042421322 = weight(_text_:22 in 2464) [ClassicSimilarity], result of:
              0.042421322 = score(doc=2464,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23214069 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Library trends. 48(1999) no.1, S.22-47
  17. Garcia Marco, F.J.; Esteban Navarro, M.A.: On some contributions of the cognitive sciences and epistemology to a theory of classification (1993) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 5876) [ClassicSimilarity], result of:
              0.03267146 = score(doc=5876,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 5876, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5876)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Intended is first of all a preliminary review of the implications that the new approaches to the theory of classification, mainly from cognitive psychology and epistemology may have for information work and research. As a secondary topic the scientific relations existing among information science, epistemology and the cognitive sciences are discussed. Classification is seen as a central activity in all daily and scientific activities, and, of course, of knowledge organization in information services. There is a mutual implication between classification and conceptualization, as the former moves in a natural way to the latter and the best result elaborated for classification is the concept. Research in concept theory is a need for a theory of classification. In this direction it is of outstanding importance to integrate the achievements of 'natural concept formation theory' (NCFT) as an alternative approach to conceptualization different from the traditional one of logicians and problem solving researchers. In conclusion both approaches are seen as being complementary: the NCFT approach being closer to the user and the logical one being more suitable for experts, including 'expert systems'
  18. Spiteri, L.: ¬A simplified model for facet analysis : Ranganathan 101 (1998) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 3842) [ClassicSimilarity], result of:
              0.03267146 = score(doc=3842,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 3842, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3842)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranganathan's canons, principles, and postulates can easily confuse readers, especially because he revised and added to them in various editions of his many books. The Classification Research Group, who drew on Ranganathan's work as their basis for classification theory but developed it in their own way, has never clearly organized all their equivalent canons and principles. In this article Spiteri gathers the fundamental rules from both systems and compares and contrasts them. She makes her own clearer set of principles for constructing facets, stating the subject of a document, and designing notation. Spiteri's "simplified model" is clear and understandable, but certainly not simplistic. The model does not include methods for making a faceted system, but will serve as a very useful guide in how to turn initial work into a rigorous classification. Highly recommended
  19. Hjoerland, B.: ¬The classification of psychology : a case study in the classification of a knowledge field (1998) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 3783) [ClassicSimilarity], result of:
              0.021780973 = score(doc=3783,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 3783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3783)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Different approaches to the classification of a knowledge field include empiristic, rationalistic, historistic, and pragmatic methods. This paper demonstrates how these different methids have been applied to the classification of psychology. An etymological apporach is insufficient to define the subject matter of psychology, because other terms can be used to describe the same domain. To define the subject matter of psychology from the point of view of its formal establishment as a science and academic discipline (in Leipzig, 1879) it is also insufficient because this was done in specific historical circumstances, which narrowed the subject matter to physiologically-related issues. When defining the subject area of a scientific field it is necessary to consider how different ontological and epistemological views have made their influences. A subject area and the approaches by which this subject area has been studied cannot be separated from each other without tracing their mutual historical interactions. The classification of a subject field is theory-laden and thus cannot be neutral or ahistorical. If classification research can claim to have a method that is more general than the study of concrete developments in the single knowledge fields the key is to be found in the general epistemological theories. It is shown how basic epistemological assumptions have formed the different approaches to psychology during the 20th century. The progress in the understanding of basic philosophical questions is decisive both for the development of a knowledge field and as the point of departure of classification. The theoretical principles developed in this paper are applied in a brief analysis of some concrete classification systems, including the one used by PsycINFO / Psychologcal Abstracts. The role of classification in modern information retrieval is also briefly discussed