Search (69 results, page 1 of 4)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Maltby, A.; Marcella, R.: Organizing knowledge : the need for system and unity (2000) 0.03
    0.031986274 = product of:
      0.117283 = sum of:
        0.0094693005 = weight(_text_:a in 181) [ClassicSimilarity], result of:
          0.0094693005 = score(doc=181,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.3089162 = fieldWeight in 181, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
        0.06372386 = weight(_text_:r in 181) [ClassicSimilarity], result of:
          0.06372386 = score(doc=181,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.724119 = fieldWeight in 181, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
        0.04408984 = weight(_text_:u in 181) [ClassicSimilarity], result of:
          0.04408984 = score(doc=181,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.50648975 = fieldWeight in 181, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.109375 = fieldNorm(doc=181)
      0.27272728 = coord(3/11)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  2. Foskett, A.C.: ¬The future of facetted classification (2000) 0.03
    0.02642211 = product of:
      0.09688106 = sum of:
        0.007731652 = weight(_text_:a in 3162) [ClassicSimilarity], result of:
          0.007731652 = score(doc=3162,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.25222903 = fieldWeight in 3162, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
        0.045059573 = weight(_text_:r in 3162) [ClassicSimilarity], result of:
          0.045059573 = score(doc=3162,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.51202947 = fieldWeight in 3162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
        0.04408984 = weight(_text_:u in 3162) [ClassicSimilarity], result of:
          0.04408984 = score(doc=3162,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.50648975 = fieldWeight in 3162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.109375 = fieldNorm(doc=3162)
      0.27272728 = coord(3/11)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  3. Triska, R.: Artificial intelligence, classification theory and the uncertainty reduction process (2007) 0.03
    0.025838278 = product of:
      0.07105526 = sum of:
        0.0039050733 = weight(_text_:a in 1139) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=1139,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.03218541 = weight(_text_:r in 1139) [ClassicSimilarity], result of:
          0.03218541 = score(doc=1139,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.36573532 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.0034720355 = weight(_text_:s in 1139) [ClassicSimilarity], result of:
          0.0034720355 = score(doc=1139,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.120123915 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
        0.031492744 = weight(_text_:u in 1139) [ClassicSimilarity], result of:
          0.031492744 = score(doc=1139,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.3617784 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.078125 = fieldNorm(doc=1139)
      0.36363637 = coord(4/11)
    
    Pages
    S.479-483
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
    Type
    a
  4. Szostak, R.: Interdisciplinarity and the classification of scholarly documents by phenomena, theories and methods (2007) 0.02
    0.020670623 = product of:
      0.05684421 = sum of:
        0.0031240587 = weight(_text_:a in 1135) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=1135,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.025748327 = weight(_text_:r in 1135) [ClassicSimilarity], result of:
          0.025748327 = score(doc=1135,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.29258826 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.0027776284 = weight(_text_:s in 1135) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=1135,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
        0.025194194 = weight(_text_:u in 1135) [ClassicSimilarity], result of:
          0.025194194 = score(doc=1135,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.28942272 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
      0.36363637 = coord(4/11)
    
    Pages
    S.470-477
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
    Type
    a
  5. Satija, M.P.: Relationships in Ranganathan's Colon Classification (2001) 0.02
    0.019315468 = product of:
      0.053117536 = sum of:
        0.006112407 = weight(_text_:a in 1155) [ClassicSimilarity], result of:
          0.006112407 = score(doc=1155,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19940455 = fieldWeight in 1155, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.022529786 = weight(_text_:r in 1155) [ClassicSimilarity], result of:
          0.022529786 = score(doc=1155,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.25601473 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.0024304248 = weight(_text_:s in 1155) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=1155,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
        0.02204492 = weight(_text_:u in 1155) [ClassicSimilarity], result of:
          0.02204492 = score(doc=1155,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.25324488 = fieldWeight in 1155, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1155)
      0.36363637 = coord(4/11)
    
    Abstract
    Ranganathan's Colon Classification (CC) treats knowledge as a multidimensional structure, enshrining a multiplicity of complex relations. This complexity is manipulated within the CC an the basis of numerous of Ranganathan's contributions to subject analysis, including the modes of formation of subjects; an objective rationale for the arrangement of main classes; the PMEST facet formula, extended by the postulate of rounds and levels; a general dependency principle for collocation of related components in a facet formula, phase relationships between the components of complex interdiscipfnary subjects; the recurrence of an APUPA arrangement throughout the linear ordering of materials; and an absolute syntax of ideas.
    Pages
    S.199-210
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Type
    a
  6. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.02
    0.017851477 = product of:
      0.049091563 = sum of:
        0.0052392064 = weight(_text_:a in 3533) [ClassicSimilarity], result of:
          0.0052392064 = score(doc=3533,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1709182 = fieldWeight in 3533, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.019311246 = weight(_text_:r in 3533) [ClassicSimilarity], result of:
          0.019311246 = score(doc=3533,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.0020832212 = weight(_text_:s in 3533) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3533,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.022457888 = weight(_text_:k in 3533) [ClassicSimilarity], result of:
          0.022457888 = score(doc=3533,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.23664509 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
      0.36363637 = coord(4/11)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
    Source
    Knowledge organization. 31(2004) no.3, S.151-160
    Type
    a
  7. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.02
    0.016905174 = product of:
      0.046489224 = sum of:
        0.0061991126 = weight(_text_:a in 1138) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=1138,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 1138, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.019311246 = weight(_text_:r in 1138) [ClassicSimilarity], result of:
          0.019311246 = score(doc=1138,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.0020832212 = weight(_text_:s in 1138) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1138,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.018895645 = weight(_text_:u in 1138) [ClassicSimilarity], result of:
          0.018895645 = score(doc=1138,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.21706703 = fieldWeight in 1138, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
      0.36363637 = coord(4/11)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Pages
    S.99-113
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Type
    a
  8. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.02
    0.015292694 = product of:
      0.042054906 = sum of:
        0.0058576106 = weight(_text_:a in 2291) [ClassicSimilarity], result of:
          0.0058576106 = score(doc=2291,freq=18.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.19109234 = fieldWeight in 2291, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.0017360178 = weight(_text_:s in 2291) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2291,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.015746372 = weight(_text_:u in 2291) [ClassicSimilarity], result of:
          0.015746372 = score(doc=2291,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.1808892 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
        0.018714907 = weight(_text_:k in 2291) [ClassicSimilarity], result of:
          0.018714907 = score(doc=2291,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.19720423 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.36363637 = coord(4/11)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
    Pages
    S.11-18
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  9. Olson, H.A.: Cultural discourse of classification : indigeous alternatives to the tradition of Aristotle, Durkheim, and Foucault (2001) 0.01
    0.012201586 = product of:
      0.03355436 = sum of:
        0.006345466 = product of:
          0.012690932 = sum of:
            0.012690932 = weight(_text_:h in 1594) [ClassicSimilarity], result of:
              0.012690932 = score(doc=1594,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.19214681 = fieldWeight in 1594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1594)
          0.5 = coord(1/2)
        0.0027335514 = weight(_text_:a in 1594) [ClassicSimilarity], result of:
          0.0027335514 = score(doc=1594,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.089176424 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.0024304248 = weight(_text_:s in 1594) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=1594,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.02204492 = weight(_text_:u in 1594) [ClassicSimilarity], result of:
          0.02204492 = score(doc=1594,freq=2.0), product of:
            0.08704981 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.026584605 = queryNorm
            0.25324488 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
      0.36363637 = coord(4/11)
    
    Pages
    S.91-106
    Source
    Advances in classification research, vol.10: proceedings of the 10th ASIS SIG/CR Classification Research Workshop. Ed.: Albrechtsen, H. u. J.E. Mai
    Type
    a
  10. Poli, R.: Framing information (2003) 0.01
    0.008984739 = product of:
      0.032944042 = sum of:
        0.0044180867 = weight(_text_:a in 2711) [ClassicSimilarity], result of:
          0.0044180867 = score(doc=2711,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14413087 = fieldWeight in 2711, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
        0.025748327 = weight(_text_:r in 2711) [ClassicSimilarity], result of:
          0.025748327 = score(doc=2711,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.29258826 = fieldWeight in 2711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
        0.0027776284 = weight(_text_:s in 2711) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=2711,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 2711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=2711)
      0.27272728 = coord(3/11)
    
    Abstract
    The distinction between semiotic, semantic and ontological classifications is introduced. A few examples of semantic and ontological categories are then provided and discussed. The thesis is defended that semantic categories depend an ontological categories.
    Pages
    S.225-231
    Type
    a
  11. McCool, M.; St. Amant, K.: Field dependence and classification : implications for global information systems (2009) 0.01
    0.008862852 = product of:
      0.032497123 = sum of:
        0.003865826 = weight(_text_:a in 2854) [ClassicSimilarity], result of:
          0.003865826 = score(doc=2854,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12611452 = fieldWeight in 2854, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
        0.0024304248 = weight(_text_:s in 2854) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=2854,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 2854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
        0.02620087 = weight(_text_:k in 2854) [ClassicSimilarity], result of:
          0.02620087 = score(doc=2854,freq=2.0), product of:
            0.09490114 = queryWeight, product of:
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.026584605 = queryNorm
            0.27608594 = fieldWeight in 2854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.569778 = idf(docFreq=3384, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
      0.27272728 = coord(3/11)
    
    Abstract
    This article describes research designed to assess the interaction between culture and classification. Mounting evidence in cross-cultural psychology has indicated that culture may affect classification, which is an important dimension to global information systems. Data were obtained through three classification tasks, two of which were adapted from recent studies in cross-cultural psychology. Data were collected from 36 participants, 19 from China and 17 from the United States. The results of this research indicate that Chinese participants appear to be more field dependent, which may be related to a cultural preference for relationships instead of categories.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.6, S.1258-1266
    Type
    a
  12. Szostak, R.: Classification, interdisciplinarity, and the study of science (2008) 0.01
    0.008533091 = product of:
      0.031288 = sum of:
        0.0055226083 = weight(_text_:a in 1893) [ClassicSimilarity], result of:
          0.0055226083 = score(doc=1893,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18016359 = fieldWeight in 1893, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
        0.022758523 = weight(_text_:r in 1893) [ClassicSimilarity], result of:
          0.022758523 = score(doc=1893,freq=4.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.25861394 = fieldWeight in 1893, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
        0.003006871 = weight(_text_:s in 1893) [ClassicSimilarity], result of:
          0.003006871 = score(doc=1893,freq=6.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.10403037 = fieldWeight in 1893, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
      0.27272728 = coord(3/11)
    
    Abstract
    Purpose - This paper aims to respond to the 2005 paper by Hjørland and Nissen Pedersen by suggesting that an exhaustive and universal classification of the phenomena that scholars study, and the methods and theories they apply, is feasible. It seeks to argue that such a classification is critical for interdisciplinary scholarship. Design/methodology/approach - The paper presents a literature-based conceptual analysis, taking Hjørland and Nissen Pedersen as its starting point. Hjørland and Nissen Pedersen had identified several difficulties that would be encountered in developing such a classification; the paper suggests how each of these can be overcome. It also urges a deductive approach as complementary to the inductive approach recommended by Hjørland and Nissen Pedersen. Findings - The paper finds that an exhaustive and universal classification of scholarly documents in terms of (at least) the phenomena that scholars study, and the theories and methods they apply, appears to be both possible and desirable. Practical implications - The paper suggests how such a project can be begun. In particular it stresses the importance of classifying documents in terms of causal links between phenomena. Originality/value - The paper links the information science, interdisciplinary, and study of science literatures, and suggests that the types of classification outlined above would be of great value to scientists/scholars, and that they are possible.
    Content
    Bezugnahme auf: Hjoerland, B., K.N. Pedersen: A substantive theory of classification for information retrieval. In: Journal of documentation. 61(2005) no.5, S.582-597. - Vgl. auch: Hjoerland, R.: Core classification theory: : a reply to Szostak. In: Journal of documentation. 64(2008) no.3, S.333 - 342.
    Source
    Journal of documentation. 64(2008) no.3, S.319-332
    Type
    a
  13. Kashyap, M.M.: Likeness between Ranganathan's postulations based approach to knowledge classification and entity relationship data modelling approach (2003) 0.01
    0.007176992 = product of:
      0.026315637 = sum of:
        0.0040582716 = weight(_text_:a in 2045) [ClassicSimilarity], result of:
          0.0040582716 = score(doc=2045,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.13239266 = fieldWeight in 2045, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
        0.019311246 = weight(_text_:r in 2045) [ClassicSimilarity], result of:
          0.019311246 = score(doc=2045,freq=2.0), product of:
            0.088001914 = queryWeight, product of:
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.026584605 = queryNorm
            0.2194412 = fieldWeight in 2045, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3102584 = idf(docFreq=4387, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
        0.00294612 = weight(_text_:s in 2045) [ClassicSimilarity], result of:
          0.00294612 = score(doc=2045,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.101928525 = fieldWeight in 2045, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2045)
      0.27272728 = coord(3/11)
    
    Abstract
    This paper describes the Postulations Based Approach to Facet Classification as articulated by S. R. Ranganathan for knowledge classification and for the design of a facet scheme of library classification, and the Entity-Relationship Data Modelling and Analysis Approach set by Peter Pin-Sen Chen; both further modified by other experts. Efforts have been made to show the parallelism between the two approaches. It points out that, both the theoretical approaches are concerned with the organisation of knowledge or information, and apply almost similar theoretical principles, concepts, and techniques for the design and development of a framework for the organisation of knowledge, information, or data, in their respective domains. It states that both the approaches are complementary and supplementary to each other. The paper also argues that Ranganathan's postulations based approach or analytico-synthetic approach to knowledge classification can be applied for developing efficient data retrieval systems in addition to the data analysis and modelling domain.
    Source
    Knowledge organization. 30(2003) no.1, S.1-19
    Type
    a
  14. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.005538839 = product of:
      0.020309076 = sum of:
        0.0031240587 = weight(_text_:a in 5083) [ClassicSimilarity], result of:
          0.0031240587 = score(doc=5083,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10191591 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.0027776284 = weight(_text_:s in 5083) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=5083,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.014407388 = product of:
          0.028814776 = sum of:
            0.028814776 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.028814776 = score(doc=5083,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    27. 5.2007 22:19:35
    Source
    Journal of educational media and library sciences. 47(2006) no.2, S.153-171
    Type
    a
  15. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.005392238 = product of:
      0.019771539 = sum of:
        0.0047346503 = weight(_text_:a in 166) [ClassicSimilarity], result of:
          0.0047346503 = score(doc=166,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1544581 = fieldWeight in 166, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.0024304248 = weight(_text_:s in 166) [ClassicSimilarity], result of:
          0.0024304248 = score(doc=166,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08408674 = fieldWeight in 166, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.012606464 = product of:
          0.025212929 = sum of:
            0.025212929 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
              0.025212929 = score(doc=166,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.2708308 = fieldWeight in 166, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=166)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    The idea of sameness is used to gather material in classifications. However, it is also used to separate what is different. Sameness and difference as guiding principles of classification seem obvious but are actually fundamental characteristics specifically related to Western culture. Sameness is not a singular factor, but has the potential to represent multiple characteristics or facets. This article explores the ramifications of which characteristics are used to define classifications and in what order. It explains the primacy of division by discipline, its origins in Western philosophy, and the cultural specificity that results. The Dewey Decimal Classification is used as an example throughout.
    Date
    10. 9.2000 17:38:22
    Source
    Library resources and technical services. 45(2001) no.3, S.115-122
    Type
    a
  16. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.00
    0.004793141 = product of:
      0.01757485 = sum of:
        0.0046860883 = weight(_text_:a in 780) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=780,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 780, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.0020832212 = weight(_text_:s in 780) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=780,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.010805541 = product of:
          0.021611081 = sum of:
            0.021611081 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.021611081 = score(doc=780,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
    Source
    El profesional de la información, 2007, noviembre-diciembre, v.16, no.6, S.580-589
    Type
    a
  17. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.00
    0.0040477123 = product of:
      0.014841611 = sum of:
        0.0033818933 = weight(_text_:a in 3483) [ClassicSimilarity], result of:
          0.0033818933 = score(doc=3483,freq=6.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.11032722 = fieldWeight in 3483, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.0024550997 = weight(_text_:s in 3483) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=3483,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 3483, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.009004618 = product of:
          0.018009236 = sum of:
            0.018009236 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.018009236 = score(doc=3483,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Footnote
    Vgl.: Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification". In: Knowledge organization. 37(2010) no.2, S.111-120.
    Pages
    S.19-22
    Type
    a
  18. Albrechtsen, H.; Pejtersen, A.M.: Cognitive work analysis and work centered design of classification schemes (2003) 0.00
    0.003742174 = product of:
      0.013721304 = sum of:
        0.0054389704 = product of:
          0.010877941 = sum of:
            0.010877941 = weight(_text_:h in 3005) [ClassicSimilarity], result of:
              0.010877941 = score(doc=3005,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.16469726 = fieldWeight in 3005, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3005)
          0.5 = coord(1/2)
        0.0061991126 = weight(_text_:a in 3005) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=3005,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 3005, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3005)
        0.0020832212 = weight(_text_:s in 3005) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3005,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3005, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3005)
      0.27272728 = coord(3/11)
    
    Abstract
    Work centered design of classification schemes is an emerging area of research which poses particular challenges to domain analysis and scheme construction. A key challenge in work centered design of classification schemes is the evolving semantics of work. This article introduces a work centered approach to the design of classification schemes, based an the framework of cognitive work analysis. We launch collaborative task situations as a new unit of analysis for capturing evolving semantic structures in work domains. An example case from a cognitive work analysis of three national film research archives illustrates the application of the framework for identifying actors' needs for a classification scheme to support collaborative knowledge integration. It is concluded that a main contribution of the new approach is support for empirical analysis and overall design of classification schemes that can serve as material interfaces for actors' negotiations and integration of knowledge perspectives during collaborative work.
    Source
    Knowledge organization. 30(2003) nos.3/4, S.213-227
    Type
    a
  19. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.00
    0.003742174 = product of:
      0.013721304 = sum of:
        0.0054389704 = product of:
          0.010877941 = sum of:
            0.010877941 = weight(_text_:h in 534) [ClassicSimilarity], result of:
              0.010877941 = score(doc=534,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.16469726 = fieldWeight in 534, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=534)
          0.5 = coord(1/2)
        0.0061991126 = weight(_text_:a in 534) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=534,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 534, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.0020832212 = weight(_text_:s in 534) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=534,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.27272728 = coord(3/11)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Source
    New review of hypermedia and multimedia. 12(2006) no.1, S.63-81
    Type
    a
  20. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.00
    0.0033869138 = product of:
      0.012418684 = sum of:
        0.0038261751 = weight(_text_:a in 2763) [ClassicSimilarity], result of:
          0.0038261751 = score(doc=2763,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12482099 = fieldWeight in 2763, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
        0.0013888142 = weight(_text_:s in 2763) [ClassicSimilarity], result of:
          0.0013888142 = score(doc=2763,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.048049565 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
        0.007203694 = product of:
          0.014407388 = sum of:
            0.014407388 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.014407388 = score(doc=2763,freq=2.0), product of:
                0.09309476 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.026584605 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
    Pages
    S.465-471
    Type
    a