Search (88 results, page 5 of 5)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × type_ss:"a"
  1. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 323) [ClassicSimilarity], result of:
              0.027226217 = score(doc=323,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=323)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
  2. Gnoli, C.: Classifying phenomena : Part 1: dimensions (2016) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 3417) [ClassicSimilarity], result of:
              0.027226217 = score(doc=3417,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 3417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3417)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the first part of a study on the classification of phenomena. It starts by addressing the status of classification schemes among knowledge organization systems (KOSs), as some features of them have been overlooked in recent reviews of KOS types. It then considers the different dimensions implied in a KOS, which include: the observed phenomena, the cultural and disciplinary perspective under which they are treated, the features of documents carrying such treatment, the collections of such documents as managed in libraries, archives or museums, the information needs prompting to search and use these collections and the people experiencing such different information needs. Until now, most library classification schemes have given priority to the perspective dimension as they first list disciplines. However, an increasing number of voices are now considering the possibility of classification schemes giving priority to phenomena as advocated in the León Manifesto. Although these schemes first list phenomena as their main classes, they can as well express perspective or the other relevant dimensions that occur in a classified item. The independence of a phenomenon-based classification from the institutional divisions into disciplines contributes to giving knowledge organization a more proactive and influential role.
  3. Parrochia, D.: Mathematical theory of classification (2018) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 4308) [ClassicSimilarity], result of:
              0.027226217 = score(doc=4308,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 4308, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4308)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One of the main topics of scientific research, classification is the operation consisting of distributing objects in classes or groups which are, in general, less numerous than them. From Antiquity to the Classical Age, it has a long history where philosophers (Aristotle), and natural scientists (Linnaeus), took a great part. But from the nineteenth century (with the growth of chemistry and information science) and the twentieth century (with the arrival of mathematical models and computer science), mathematics (especially theory of orders and theory of graphs or hypergraphs) allows us to compute all the possible partitions, chains of partitions, covers, hypergraphs or systems of classes we can construct on a domain. In spite of these advances, most of classifications are still based on the evaluation of ressemblances between objects that constitute the empirical data. However, all these classifications remain, for technical and epistemological reasons we detail below, very unstable ones. We lack a real algebra of classifications, which could explain their properties and the relations existing between them. Though the aim of a general theory of classifications is surely a wishful thought, some recent conjecture gives the hope that the existence of a metaclassification (or classification of all classification schemes) is possible
  4. Ranganathan, S.R.: Facet analysis: fundamental categories (1985) 0.01
    0.0067381454 = product of:
      0.013476291 = sum of:
        0.013476291 = product of:
          0.026952581 = sum of:
            0.026952581 = weight(_text_:systems in 3631) [ClassicSimilarity], result of:
              0.026952581 = score(doc=3631,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.16806422 = fieldWeight in 3631, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3631)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Colon Classification has not been widely adopted; however, the theory of facet analysis and synthesis Ranganathan developed has proved to be most influential. Although many theorists of subject analysis do not totally agree with his fundamental categories or citation order, Ranganathan's concept of facet analysis and synthesis has provided a viable method and a framework for approaching subject analysis and has become the foundation of subject analysis in the twentieth century. In this sense, his theory laid the groundwork for later investigations and inquiries into the nature of subject and classificatory categories and citation order. His influence is felt in all modern classification schemes and indexing systems. This is attested to by the citations to his ideas and works in numerous papers included in this collection and by the fact that other modern classification systems such as the Dewey Decimal Classification and the Bliss Bibliographic Classification have become increasingly faceted in recent editions. The following chapter from Elements of Library Classification represents one of Ranganathan's many expositions of facet analysis and fundamental categories. It is chosen because of its clarity of expression and comprehensibility (many readers find the majority of his writings difficult to understand).
  5. Hjoerland, B.: ¬The classification of psychology : a case study in the classification of a knowledge field (1998) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 3783) [ClassicSimilarity], result of:
              0.021780973 = score(doc=3783,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 3783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3783)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Different approaches to the classification of a knowledge field include empiristic, rationalistic, historistic, and pragmatic methods. This paper demonstrates how these different methids have been applied to the classification of psychology. An etymological apporach is insufficient to define the subject matter of psychology, because other terms can be used to describe the same domain. To define the subject matter of psychology from the point of view of its formal establishment as a science and academic discipline (in Leipzig, 1879) it is also insufficient because this was done in specific historical circumstances, which narrowed the subject matter to physiologically-related issues. When defining the subject area of a scientific field it is necessary to consider how different ontological and epistemological views have made their influences. A subject area and the approaches by which this subject area has been studied cannot be separated from each other without tracing their mutual historical interactions. The classification of a subject field is theory-laden and thus cannot be neutral or ahistorical. If classification research can claim to have a method that is more general than the study of concrete developments in the single knowledge fields the key is to be found in the general epistemological theories. It is shown how basic epistemological assumptions have formed the different approaches to psychology during the 20th century. The progress in the understanding of basic philosophical questions is decisive both for the development of a knowledge field and as the point of departure of classification. The theoretical principles developed in this paper are applied in a brief analysis of some concrete classification systems, including the one used by PsycINFO / Psychologcal Abstracts. The role of classification in modern information retrieval is also briefly discussed
  6. Campbell, G.: ¬A queer eye for the faceted guy : how a universal classification principle can be applied to a distinct subculture (2004) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 2639) [ClassicSimilarity], result of:
              0.021780973 = score(doc=2639,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 2639, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2639)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The results of a small qualitative study of gay and lesbian information users suggest that facet analysis as it is increasingly practised in the field of information architecture provides a promising avenue for improving information access to gay and lesbian information resources. Findings indicated that gay and lesbian information users have an acute sense of categorization grounded in the need to identify gay-positive physical and social spaces, and in their finely-honed practices of detecting gay "facets" to general information themes. They are also, however, very flexible and adaptable in their application of gay-related facet values, which suggests that browsing systems will have to be designed with considerable care.
  7. Hjoerland, B.: ¬The methodology of constructing classification schemes : a discussion of the state-of-the-art (2003) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 2760) [ClassicSimilarity], result of:
              0.021780973 = score(doc=2760,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Special classifications have been somewhat neglected in KO compared to general classifications. The methodology of constructing special classifications is important, however, also for the methodology of constructing general classification schemes. The methodology of constructing special classifications can be regarded as one among about a dozen approaches to domain analysis. The methodology of (special) classification in LIS has been dominated by the rationalistic facet-analytic tradition, which, however, neglects the question of the empirical basis of classification. The empirical basis is much better grasped by, for example, bibliometric methods. Even the combination of rational and empirical methods is insufficient. This presentation will provide evidence for the necessity of historical and pragmatic methods for the methodology of classification and will point to the necessity of analyzing "paradigms". The presentation covers the methods of constructing classifications from Ranganathan to the design of ontologies in computer science and further to the recent "paradigm shift" in classification research. 1. Introduction Classification of a subject field is one among about eleven approaches to analyzing a domain that are specific for information science and in my opinion define the special competencies of information specialists (Hjoerland, 2002a). Classification and knowledge organization are commonly regarded as core qualifications of librarians and information specialists. Seen from this perspective one expects a firm methodological basis for the field. This paper tries to explore the state-of-the-art conceming the methodology of classification. 2. Classification: Science or non-science? As it is part of the curriculum at universities and subject in scientific journals and conferences like ISKO, orte expects classification/knowledge organization to be a scientific or scholarly activity and a scientific field. However, very often when information specialists classify or index documents and when they revise classification system, the methods seem to be rather ad hoc. Research libraries or scientific databases may employ people with adequate subject knowledge. When information scientists construct or evaluate systems, they very often elicit the knowledge from "experts" (Hjorland, 2002b, p. 260). Mostly no specific arguments are provided for the specific decisions in these processes.
  8. Feibleman, J.K.: Theory of integrative levels (1985) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 3637) [ClassicSimilarity], result of:
              0.021780973 = score(doc=3637,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 3637, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3637)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the early 1960s, the Classification Research Group in London (q.v.) had reached the point in its experimentation with faceted classification systems where some kind of amalgamation of individual schemes was needed. They sought a unifying principle or set of principles that would provide a basis for a general system. The individual faceted schemes would not merge; what was central to one subject was fringe to another, but the fringes did not coalesce. In looking farther afield, they discovered the theory of "integrative levels" set forth by James K. Feibleman, Chairman and Professor of Philosophy at Tulane University until 1969 and author of forty-five books and more than 175 articles in various fields of philosophy. Feibleman's research concerned the development of the sciences considered in terms of an organizing principle. In the physical sciences, one Gould begin with subparticles and work up to atoms, molecules, and molecular assemblages, interpolating the biological equivalents. Feibleman separates the various levels by use of a "no return" device: "each level organizes the level or levels below it plus one emergent quality." The process is not reversible without loss of identity. A dog, in his system, is no longer a dog when it has been run over by a car; the smashed parts cannot be put together again to function as a dog. The theory of integrative levels is an interesting one. The levels from subparticles to clusters of galaxies or from nuclei to organisms are relatively clearly defined. A discipline, such as any of the ones comprising the "hard sciences," is made up of integrative levels. Research is cumulative so that scholars are ready to contribute when very young. Classification in these fields can make good use of the theory of integrative levels-in fact it should do so. It would appear that the method is more difficult to apply in the social sciences and humanities. This appearance may, however, be superficial. Almost all past happenings are irrevocable; one cannot recall the French Revolution and re-fight it. Any academic discipline that moves an over time does not usually return to an earlier position, even when there are schools of thought involved. Philosophy may have "neo-" this or that, but the subsequent new is not the same as the previous new. One has only to look at the various kinds of neo-Platonists that arise from time to time to realize that. Physical science recognizes a series of paradigms in changing its methodology over time and a similar situation may also turn out to be true in cognitive science." If this should turn out to be the case, integrative levels would probably have a part in that field as weIl.

Years

Languages