Search (3 results, page 1 of 1)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[1980 TO 1990}
  1. Bliss, H.E.: ¬A bibliographic classification : principles and definitions (1985) 0.01
    0.005845605 = product of:
      0.01169121 = sum of:
        0.01169121 = product of:
          0.02338242 = sum of:
            0.02338242 = weight(_text_:j in 3621) [ClassicSimilarity], result of:
              0.02338242 = score(doc=3621,freq=2.0), product of:
                0.16650963 = queryWeight, product of:
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.052402776 = queryNorm
                0.14042683 = fieldWeight in 3621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1774964 = idf(docFreq=5010, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Henry Evelyn Bliss (1870-1955) devoted several decades of his life to the study of classification and the development of the Bibliographic Classification scheme while serving as a librarian in the College of the City of New York. In the course of the development of the Bibliographic Classification, Bliss developed a body of classification theory published in a number of articles and books, among which the best known are The Organization of Knowledge and the System of the Sciences (1929), Organization of Knowledge in Libraries and the Subject Approach to Books (1933; 2nd ed., 1939), and the lengthy preface to A Bibliographic Classification (Volumes 1-2, 1940; 2nd ed., 1952). In developing the Bibliographic Classification, Bliss carefully established its philosophical and theoretical basis, more so than was attempted by the makers of other classification schemes, with the possible exception of S. R. Ranganathan (q.v.) and his Colon Classification. The basic principles established by Bliss for the Bibliographic Classification are: consensus, collocation of related subjects, subordination of special to general and gradation in specialty, and the relativity of classes and of classification (hence alternative location and alternative treatment). In the preface to the schedules of A Bibliographic Classification, Bliss spells out the general principles of classification as weIl as principles specifically related to his scheme. The first volume of the schedules appeared in 1940. In 1952, he issued a second edition of the volume with a rewritten preface, from which the following excerpt is taken, and with the addition of a "Concise Synopsis," which is also included here to illustrate the principles of classificatory structure. In the excerpt reprinted below, Bliss discusses the correlation between classes, concepts, and terms, as weIl as the hierarchical structure basic to his classification scheme. In his discussion of cross-classification, Bliss recognizes the "polydimensional" nature of classification and the difficulties inherent in the two-dimensional approach which is characteristic of linear classification. This is one of the earliest works in which the multidimensional nature of classification is recognized. The Bibliographic Classification did not meet with great success in the United States because the Dewey Decimal Classification and the Library of Congress Classification were already weIl ensconced in American libraries by then. Nonetheless, it attracted considerable attention in the British Commonwealth and elsewhere in the world. A committee was formed in Britain which later became the Bliss Classification Association. A faceted edition of the scheme has been in preparation under the direction of J. Mills and V. Broughton. Several parts of this new edition, entitled Bliss Bibliographic Classification, have been published.
  2. Classification Research Group: ¬The need for a faceted classification as the basis of all methods of information retrieval (1985) 0.00
    0.004512262 = product of:
      0.009024524 = sum of:
        0.009024524 = product of:
          0.036098097 = sum of:
            0.036098097 = weight(_text_:authors in 3640) [ClassicSimilarity], result of:
              0.036098097 = score(doc=3640,freq=2.0), product of:
                0.2388945 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.052402776 = queryNorm
                0.15110476 = fieldWeight in 3640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    The technique chosen was S. R. Ranganathan's facet analysis (q.v.). This method works from the bottom up: a term is categorized according to its parent class, as a kind, state, property, action, operation upon something, result of an Operation, agent, and so on. These modes of definition represent characteristics of division. Following the publication of this paper, the group worked for over ten years developing systems following this general pattern with various changes and experimental arrangements. Ranganathan's Colon Classification was the original of this type of method, but the Group rejected his contention that there are only five fundamental categories to be found in the knowledge base. They did, in fact, end up with varying numbers of categories in the experimental systems which they ultimately were to make. Notation was also recognized as a problem, being complex, illogical, lengthy, obscure and hard to understand. The Group tried to develop a rationale for notation, both as an ordering and as a finding device. To describe and represent a class, a notation could be long, but as a finding device, brevity would be preferable. The Group was to experiment with this aspect of classification and produce a number of interesting results. The Classification Research Group began meeting informally to discuss classification matters in 1952 and continues to meet, usually in London, to the present day. Most of the British authors whose work is presented in these pages have been members for most of the Group's life and continue in it. The Group maintains the basic position outlined in this paper to the present day. Its experimental approach has resulted in much more information about the nature and functions of classification systems. The ideal system has yet to be found. Classification research is still a promising area. The future calls for more experimentation based an reasoned approaches, following the example set by the Classification Research Group.
  3. Fairthorne, R.A.: Temporal structure in bibliographic classification (1985) 0.00
    0.004512262 = product of:
      0.009024524 = sum of:
        0.009024524 = product of:
          0.036098097 = sum of:
            0.036098097 = weight(_text_:authors in 3651) [ClassicSimilarity], result of:
              0.036098097 = score(doc=3651,freq=2.0), product of:
                0.2388945 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.052402776 = queryNorm
                0.15110476 = fieldWeight in 3651, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3651)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    The fan of past documents may be seen across time as a philosophical "wake," translated documents as a sideways relationship and future documents as another fan spreading forward from a given document (p. 365). The "overlap of reading histories can be used to detect common interests among readers," (p. 365) and readers may be classified accordingly. Finally, Fairthorne rejects the notion of a "general" classification, which he regards as a mirage, to be replaced by a citation-type network to identify classes. An interesting feature of his work lies in his linkage between old and new documents via a bibliographic method-citations, authors' names, imprints, style, and vocabulary - rather than topical (subject) terms. This is an indirect method of creating classes. The subject (aboutness) is conceived as a finite, common sharing of knowledge over time (past, present, and future) as opposed to the more common hierarchy of topics in an infinite schema assumed to be universally useful. Fairthorne, a mathematician by training, is a prolific writer an the foundations of classification and information. His professional career includes work with the Royal Engineers Chemical Warfare Section and the Royal Aircraft Establishment (RAE). He was the founder of the Computing Unit which became the RAE Mathematics Department.