Search (82 results, page 2 of 5)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2000 TO 2010}
  1. Karamuftuoglu, M.: Need for a systemic theory of classification in information science (2007) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 615) [ClassicSimilarity], result of:
              0.010739701 = score(doc=615,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 615, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=615)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the article, the author aims to clarify some of the issues surrounding the discussion regarding the usefulness of a substantive classification theory in information science (IS) by means of a broad perspective. By utilizing a concrete example from the High Accuracy Retrieval from Documents (HARD) track of a Text REtrieval Conference (TREC), the author suggests that the bag of words approach to information retrieval (IR) and techniques such as relevance feedback have significant limitations in expressing and resolving complex user information needs. He argues that a comprehensive analysis of information needs involves explicating often-implicit assumptions made by the authors of scholarly documents, as well as everyday texts such as news articles. He also argues that progress in IS can be furthered by developing general theories that are applicable to multiple domains. The concrete example of application of the domain-analytic approach to subject analysis in IS to the aesthetic evaluation of works of information arts is used to support this argument.
    Type
    a
  2. Satija, M.P.: Relationships in Ranganathan's Colon Classification (2001) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 1155) [ClassicSimilarity], result of:
              0.010589487 = score(doc=1155,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 1155, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1155)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranganathan's Colon Classification (CC) treats knowledge as a multidimensional structure, enshrining a multiplicity of complex relations. This complexity is manipulated within the CC an the basis of numerous of Ranganathan's contributions to subject analysis, including the modes of formation of subjects; an objective rationale for the arrangement of main classes; the PMEST facet formula, extended by the postulate of rounds and levels; a general dependency principle for collocation of related components in a facet formula, phase relationships between the components of complex interdiscipfnary subjects; the recurrence of an APUPA arrangement throughout the linear ordering of materials; and an absolute syntax of ideas.
    Type
    a
  3. Araghi, G.F.: ¬A new scheme for library classification (2004) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 5659) [ClassicSimilarity], result of:
              0.010589487 = score(doc=5659,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 5659, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This proposed new classification scheme is based on two main elements: hierarchism and binary theory. Hence, it is called Universal Binary Classification (UBC). Some advantages of this classification are highlighted including are subject heading development, construction of a thesaurus and all terms with meaningful features arranged in tabular form that can help researchers, through a semantic process, to find what they need. This classification scheme is fully consistent with the classification of knowledge. The classification of knowledge is also based on hierarchism and binary principle. Finally, a survey on randomly selected books in McLennan Library of McGill University is presented to compare the codes of this new classification with the currently employed Library of Congress Classification (LCC) numbers in the discipline of Library and Information Sciences.
    Type
    a
  4. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2291) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2291,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2291, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2291)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  5. Broughton, V.; Slavic, A.: Building a faceted classification for the humanities : principles and procedures (2007) 0.00
    0.0025313715 = product of:
      0.005062743 = sum of:
        0.005062743 = product of:
          0.010125486 = sum of:
            0.010125486 = weight(_text_:a in 2875) [ClassicSimilarity], result of:
              0.010125486 = score(doc=2875,freq=28.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19066721 = fieldWeight in 2875, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2875)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach - Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings - In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications - The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications - Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value - As far as the authors are aware there is no comparable research in this area.
    Type
    a
  6. Campbell, G.: ¬A queer eye for the faceted guy : how a universal classification principle can be applied to a distinct subculture (2004) 0.00
    0.0024392908 = product of:
      0.0048785815 = sum of:
        0.0048785815 = product of:
          0.009757163 = sum of:
            0.009757163 = weight(_text_:a in 2639) [ClassicSimilarity], result of:
              0.009757163 = score(doc=2639,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18373153 = fieldWeight in 2639, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2639)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The results of a small qualitative study of gay and lesbian information users suggest that facet analysis as it is increasingly practised in the field of information architecture provides a promising avenue for improving information access to gay and lesbian information resources. Findings indicated that gay and lesbian information users have an acute sense of categorization grounded in the need to identify gay-positive physical and social spaces, and in their finely-honed practices of detecting gay "facets" to general information themes. They are also, however, very flexible and adaptable in their application of gay-related facet values, which suggests that browsing systems will have to be designed with considerable care.
    Content
    1. Introduction The title of this paper is taken from a TV show which has gained considerable popularity in North America: A Queer Eye for the Straight Guy, in which a group of gay men subject a helpless straight male to a complete fashion makeover. In facet analysis, this would probably be seen as an "operation upon" something, and the Bliss Bibliographic Classification would place it roughly two-thirds of the way along its facet order, after "types" and "materials," but before "space" and "time." But the link between gay communities and facet analysis extends beyond the facetious title. As Web-based information resources for gay and lesbian users continue to grow, Web sites that cater to, or at least refrain from discriminating against gay and lesbian users are faced with a daunting challenge when trying to organize these diverse resources in a way that facilitates congenial browsing. And principles of faceted classification, with their emphasis an clear and consistent principles of subdivision and their care in defining the order of subdivisions, offer an important opportunity to use time-honoured classification principles to serve the growing needs of these communities. If faceted organization schemes are to work, however, we need to know more about gay and lesbian users, and how they categorize themselves and their information sources. This paper presents the results of an effort to learn more.
    Type
    a
  7. Wilson, T.: ¬The strict faceted classification model (2006) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2836) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2836,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2836, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2836)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Faceted classification, at its core, implies orthogonality - that every facet axis exists at right angles to (i.e., independently of) every other facet axis. That's why a faceted classification is sometimes represented with a chart. This set of desserts has been classified by their confection types and, orthogonally, by their flavors.
  8. Szostak, R.: Classification, interdisciplinarity, and the study of science (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 1893) [ClassicSimilarity], result of:
              0.009567685 = score(doc=1893,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 1893, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1893)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to respond to the 2005 paper by Hjørland and Nissen Pedersen by suggesting that an exhaustive and universal classification of the phenomena that scholars study, and the methods and theories they apply, is feasible. It seeks to argue that such a classification is critical for interdisciplinary scholarship. Design/methodology/approach - The paper presents a literature-based conceptual analysis, taking Hjørland and Nissen Pedersen as its starting point. Hjørland and Nissen Pedersen had identified several difficulties that would be encountered in developing such a classification; the paper suggests how each of these can be overcome. It also urges a deductive approach as complementary to the inductive approach recommended by Hjørland and Nissen Pedersen. Findings - The paper finds that an exhaustive and universal classification of scholarly documents in terms of (at least) the phenomena that scholars study, and the theories and methods they apply, appears to be both possible and desirable. Practical implications - The paper suggests how such a project can be begun. In particular it stresses the importance of classifying documents in terms of causal links between phenomena. Originality/value - The paper links the information science, interdisciplinary, and study of science literatures, and suggests that the types of classification outlined above would be of great value to scientists/scholars, and that they are possible.
    Content
    Bezugnahme auf: Hjoerland, B., K.N. Pedersen: A substantive theory of classification for information retrieval. In: Journal of documentation. 61(2005) no.5, S.582-597. - Vgl. auch: Hjoerland, R.: Core classification theory: : a reply to Szostak. In: Journal of documentation. 64(2008) no.3, S.333 - 342.
    Type
    a
  9. Smiraglia, R.P.: Noesis : perception and every day classification (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2509) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2509,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2509, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2509)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Perception is a crucial element in the viability of any knowledge organization system because it acts as a filter that provides contextual information about phenomena, including potential categorical membership. Perception is moderated culturally, but "social" systems exercise little or no cultural conformity. "Every day classification" is rife throughout human experience; but classification arises as a system of formal constraints that embody cultural assumptions about the categories that are the products of human cognition. Noesis is a perceptual component of Husserl's phenomenological approach to human experience. How we perceive a thing is filtered by our experiential feelings about it. The purpose of this research is to increase understanding of the role of cognition in every day classification by developing a fuller profile of perception. Photographs of mailboxes (a mundane, every-day example) from different locales are compared to demonstrate the noetic process. Tag clouds are analyzed to demonstrate the kinds of perceptual differences that suggest different user perceptions among those contributing tags.
    Type
    a
  10. Gnoli, C.: Classificazione a facette (2004) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 3746) [ClassicSimilarity], result of:
              0.009471525 = score(doc=3746,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 3746, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  11. Jacob, E.K.: Classification and categorization : a difference that makes a difference (2004) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 834) [ClassicSimilarity], result of:
              0.009471525 = score(doc=834,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 834, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=834)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Examination of the systemic properties and forms of interaction that characterize classification and categorization reveals fundamental syntactic differences between the structure of classification systems and the structure of categorization systems. These distinctions lead to meaningful differences in the contexts within which information can be apprehended and influence the semantic information available to the individual. Structural and semantic differences between classification and categorization are differences that make a difference in the information environment by influencing the functional activities of an information system and by contributing to its constitution as an information environment.
    Type
    a
  12. Mai, J.-E.: Classification in context : Relativity, reality, and representation (2004) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 3017) [ClassicSimilarity], result of:
              0.009374379 = score(doc=3017,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 3017, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3017)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper surveys classification research literature, discusses various classification theories, and shows that the focus has traditionally been an establishing a scientific foundation for classification research. This paper argues that a shift has taken place, and suggests that contemporary classification research focus an contextual information as the guide for the design and construction of classification schemes.
    Type
    a
  13. Broughton, V.: Essential classification (2004) 0.00
    0.0022942503 = product of:
      0.0045885006 = sum of:
        0.0045885006 = product of:
          0.009177001 = sum of:
            0.009177001 = weight(_text_:a in 2824) [ClassicSimilarity], result of:
              0.009177001 = score(doc=2824,freq=92.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17280684 = fieldWeight in 2824, product of:
                  9.591663 = tf(freq=92.0), with freq of:
                    92.0 = termFreq=92.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Classification is a crucial skill for all information workers involved in organizing collections, but it is a difficult concept to grasp - and is even more difficult to put into practice. Essential Classification offers full guidance an how to go about classifying a document from scratch. This much-needed text leads the novice classifier step by step through the basics of subject cataloguing, with an emphasis an practical document analysis and classification. It deals with fundamental questions of the purpose of classification in different situations, and the needs and expectations of end users. The novice is introduced to the ways in which document content can be assessed, and how this can best be expressed for translation into the language of specific indexing and classification systems. The characteristics of the major general schemes of classification are discussed, together with their suitability for different classification needs.
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
  14. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 3533) [ClassicSimilarity], result of:
              0.009076704 = score(doc=3533,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 3533, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3533)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
    Type
    a
  15. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 831) [ClassicSimilarity], result of:
              0.009076704 = score(doc=831,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 831, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=831)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Type
    a
  16. Olson, H.A.: Wind and rain and dark of night : classification in scientific discourse communities (2008) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2270) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2270,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2270, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Classifications of natural phenomena demonstrate the applicability of discourse analysis in finding the importance of concepts such as warrant for categorization and classification. Temperature scales provide a body of official literature for close consideration. Official documents of the International Bureau of Weights and Measures (BIPM) reveal the reasoning behind choices affecting these standards. A more cursory scrutiny of the Saffir-Simpson Scale through scholarly publications and documentation from the National Institute of Standards and Technology (KIST) indicates the potential of this form of analysis. The same holds true for an examination of the definition of what is a planet as determined by the International Astronomical Union. As Sayers, Richardson, and Bliss have indicated, there seem to be principles and a reliance on context that bridge the differences between natural and artificial, scientific and bibliographic classifications.
    Type
    a
  17. Ereshefsky, M.: ¬The poverty of the Linnaean hierarchy : a philosophical study of biological taxonomy (2007) 0.00
    0.0022438213 = product of:
      0.0044876426 = sum of:
        0.0044876426 = product of:
          0.008975285 = sum of:
            0.008975285 = weight(_text_:a in 2493) [ClassicSimilarity], result of:
              0.008975285 = score(doc=2493,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16900843 = fieldWeight in 2493, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2493)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The question of whether biologists should continue to use the Linnaean hierarchy has been a hotly debated issue. Ereshefsky argues that biologists should abandon the Linnaean system and adopt an alternative that is in line with evolutionary theory. He then makes specific recommendations for a post-Linnaean method of classification.
    Content
    Part I: The historical turn 1. The philosophy of classification 2. A primer of biological taxonomy 3. History and classification Part II: The multiplicity of nature 4. Species pluralism 5. How to be a discerning pluralist Part III: Hierarchies and nomenclature 6. The evolution of the Linnaean hierarchy 7. Post-Linnaean taxonomy 8. The future of biological nomenclature
    Footnote
    Rez. in: KO 35(2008) no.4, S.255-259 (B. Hjoerland): "This book was published in 2000 simultaneously in hardback and as an electronic resource, and, in 2007, as a paperback. The author is a professor of philosophy at the University of Calgary, Canada. He has an impressive list of contributions, mostly addressing issues in biological taxonomy such as units of evolution, natural kinds and the species concept. The book is a scholarly criticism of the famous classification system developed by the Swedish botanist Carl Linnaeus (1707-1778). This system consists of both a set of rules for the naming of living organisms (biological nomenclature) and principles of classification. Linné's system has been used and adapted by biologists over a period of almost 250 years. Under the current system of codes, it is now applied to more than two million species of organisms. Inherent in the Linnaean system is the indication of hierarchic relationships. The Linnaean system has been justified primarily on the basis of stability. Although it has been criticized and alternatives have been suggested, it still has its advocates (e.g., Schuh, 2003). One of the alternatives being developed is The International Code of Phylogenetic Nomenclature, known as the PhyloCode for short, a system that radically alters the current nomenclatural rules. The new proposals have provoked hot debate on nomenclatural issues in biology. . . ."
  18. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 2874) [ClassicSimilarity], result of:
              0.00894975 = score(doc=2874,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 2874, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
    Type
    a
  19. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.00
    0.0021560488 = product of:
      0.0043120976 = sum of:
        0.0043120976 = product of:
          0.008624195 = sum of:
            0.008624195 = weight(_text_:a in 3262) [ClassicSimilarity], result of:
              0.008624195 = score(doc=3262,freq=52.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16239727 = fieldWeight in 3262, product of:
                  7.2111025 = tf(freq=52.0), with freq of:
                    52.0 = termFreq=52.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3262)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: KO 36(2009) no.1, S.62-63 (K. La Barre): "This special issue of Axiomathes presents an ambitious dual agenda. It attempts to highlight aspects of facet analysis (as used in LIS) that are shared by cognate approaches in philosophy, psychology, linguistics and computer science. Secondarily, the issue aims to attract others to the study and use of facet analysis. The authors represent a blend of lifetime involvement with facet analysis, such as Vickery, Broughton, Beghtol, and Dahlberg; those with well developed research agendas such as Tudhope, and Priss; and relative newcomers such as Gnoli, Cheti and Paradisi, and Slavic. Omissions are inescapable, but a more balanced issue would have resulted from inclusion of at least one researcher from the Indian school of facet theory. Another valuable addition might have been a reaction to the issue by one of the chief critics of facet analysis. Potentially useful, but absent, is a comprehensive bibliography of resources for those wishing to engage in further study, that now lie scattered throughout the issue. Several of the papers assume relative familiarity with facet analytical concepts and definitions, some of which are contested even within LIS. Gnoli's introduction (p. 127-130) traces the trajectory, extensions and new developments of this analytico- synthetic approach to subject access, while providing a laundry list of cognate approaches that are similar to facet analysis. This brief essay and the article by Priss (p. 243-255) directly addresses this first part of Gnoli's agenda. Priss provides detailed discussion of facet-like structures in computer science (p. 245- 246), and outlines the similarity between Formal Concept Analysis and facets. This comparison is equally fruitful for researchers in computer science and library and information science. By bridging into a discussion of visualization challenges for facet display, further research is also invited. Many of the remaining papers comprehensively detail the intellectual heritage of facet analysis (Beghtol; Broughton, p. 195-198; Dahlberg; Tudhope and Binding, p. 213-215; Vickery). Beghtol's (p. 131-144) examination of the origins of facet theory through the lens of the textbooks written by Ranganathan's mentor W.C.B. Sayers (1881-1960), Manual of Classification (1926, 1944, 1955) and a textbook written by Mills A Modern Outline of Classification (1964), serves to reveal the deep intellectual heritage of the changes in classification theory over time, as well as Ranganathan's own influence on and debt to Sayers.
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."
  20. Mai, J.-E.: Is classification theory possible? : Rethinking classification research (2003) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 2759) [ClassicSimilarity], result of:
              0.008557598 = score(doc=2759,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 2759, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    1. Introduction Theoretical context independent explanations of classification could enhance the universality of classification research and make knowledge about classification available to settings other than traditional libraries. There is a tremendous need for constructing classificatory structures in a range of settings many of which are far removed from the environment in which classification theory and research has been practiced in the last century and a half. The construction of classificatory structures an the Internet, intranets, and in knowledge management systems has received some attention lately. The question examined here is whether it is possible to create a single theory of classification that applies to the range of contexts in which classificatory structures are applied. The object of this paper is to question the assumption that bibliographic classification theory can resemble scientific theories. It is argued that the context of any classification influences the use and understanding of the classification to such a degree that the classification cannot be understood separate from its context. Furthermore, the development from being a novice classifier or classificationist to becoming an expert is explored. lt is assumed scientific theories must relate as much to the activity of novices as to the activity of experts and that scientific theories explain both what it is that novices do and what experts do. It is argued that expertise is achieved not through a correct application of a classification theory but through experiences and adjustment to a particular context and that the activities of novices are quite distinct from the activities of experts in that experts draws an the context of the situation and that novices do not. 2. Theory of Classification Langridge (1976) provides an account of the principles of constructing knowledge organization systems and the theoretical underpinnings of different approaches. He identifies four principles that have guided construction of knowledge organization systems: 1) ideological, 2) social purpose, 3) scientific, and 4) the disciplines. The ideological principle organizes knowledge according to an ideology that the knowledge organization system serves. Langridge gives the examples of "the Christian schemes of the Middle Ages and the Soviet scheme which substitutes for the Bible and Christianity the works of Marx and Lenin and the 'religion' of communism" (Langridge, 1976, p. 4-5).
    Type
    a

Languages

  • e 80
  • chi 1
  • i 1
  • More… Less…

Types

  • a 69
  • m 8
  • el 4
  • s 2
  • b 1
  • More… Less…