Search (233 results, page 12 of 12)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Gnoli, C.: Classifying phenomena : part 3: facets (2017) 0.00
    0.0023673228 = product of:
      0.0071019684 = sum of:
        0.0071019684 = product of:
          0.014203937 = sum of:
            0.014203937 = weight(_text_:of in 4158) [ClassicSimilarity], result of:
              0.014203937 = score(doc=4158,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.20732689 = fieldWeight in 4158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4158)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Dimensions of knowledge: facets for knowledge organization. Eds.: R.P. Smiraglia, u. H.-L. Lee
  2. Szostak, R.: Facet analysis without facet indicators (2017) 0.00
    0.0023673228 = product of:
      0.0071019684 = sum of:
        0.0071019684 = product of:
          0.014203937 = sum of:
            0.014203937 = weight(_text_:of in 4159) [ClassicSimilarity], result of:
              0.014203937 = score(doc=4159,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.20732689 = fieldWeight in 4159, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4159)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Dimensions of knowledge: facets for knowledge organization. Eds.: R.P. Smiraglia, u. H.-L. Lee
  3. Vickery, B.C.: Structure and function in retrieval languages (1997) 0.00
    0.0022319334 = product of:
      0.0066958 = sum of:
        0.0066958 = product of:
          0.0133916 = sum of:
            0.0133916 = weight(_text_:of in 572) [ClassicSimilarity], result of:
              0.0133916 = score(doc=572,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19546966 = fieldWeight in 572, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=572)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Wiederabdruck aus: Journal of documentation 27(1971) no.2, S.69-82
    Source
    From classification to 'knowledge organization': Dorking revisited or 'past is prelude'. A collection of reprints to commemorate the firty year span between the Dorking Conference (First International Study Conference on Classification Research 1957) and the Sixth International Study Conference on Classification Research (London 1997). Ed.: A. Gilchrist
  4. Szostak, R.: Interdisciplinarity and the classification of scholarly documents by phenomena, theories and methods (2007) 0.00
    0.0022319334 = product of:
      0.0066958 = sum of:
        0.0066958 = product of:
          0.0133916 = sum of:
            0.0133916 = weight(_text_:of in 1135) [ClassicSimilarity], result of:
              0.0133916 = score(doc=1135,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19546966 = fieldWeight in 1135, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1135)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
  5. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.00
    0.0022319334 = product of:
      0.0066958 = sum of:
        0.0066958 = product of:
          0.0133916 = sum of:
            0.0133916 = weight(_text_:of in 3130) [ClassicSimilarity], result of:
              0.0133916 = score(doc=3130,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.19546966 = fieldWeight in 3130, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3130)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on the research on three general classification schemes, this paper discusses issues encountered when expressing classification schemes in SKOS and explores opportunities of resolving major issues using OWL 2 Web Ontology Language.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  6. Perreault, J.: Categories and relators : a new schema (1994) 0.00
    0.0020501618 = product of:
      0.006150485 = sum of:
        0.006150485 = product of:
          0.01230097 = sum of:
            0.01230097 = weight(_text_:of in 8863) [ClassicSimilarity], result of:
              0.01230097 = score(doc=8863,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17955035 = fieldWeight in 8863, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=8863)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on the works of Aristotle, Ramon Lull, I. Kant and the experiences with relationships published in the works of S.R. Ranganathan, E.de Grolier, J. Mills, J.C. Costello, E. Wall, R. Pagès, A. Leroy, P. Braffort, M. Kervégant, J.C. Gardin and J. Farradane, categories and relationships were collected, analyzed, grouped and classified in a triadic way so that a scheme resulted by which 120 relationships could be defined and identified by their positions and their codes. The exercise was meant to create and supply a tool for the replacement of the non-significant relation symbol, the colon, in the UDC by a letter code which could express the actual relationship contained in a classificatory statement. Examples for their application illustrate different cases occuring
  7. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.00
    0.0020334837 = product of:
      0.006100451 = sum of:
        0.006100451 = product of:
          0.012200902 = sum of:
            0.012200902 = weight(_text_:of in 2467) [ClassicSimilarity], result of:
              0.012200902 = score(doc=2467,freq=34.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17808972 = fieldWeight in 2467, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  8. References on Integrative level classification (o.J.) 0.00
    0.001972769 = product of:
      0.0059183068 = sum of:
        0.0059183068 = product of:
          0.0118366135 = sum of:
            0.0118366135 = weight(_text_:of in 1098) [ClassicSimilarity], result of:
              0.0118366135 = score(doc=1098,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17277241 = fieldWeight in 1098, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1098)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Philosophical and scientific sources ; works by CRG members ; comments to CRG work ; contributions of the present project ; references to the present project
  9. Triska, R.: Artificial intelligence, classification theory and the uncertainty reduction process (2007) 0.00
    0.001972769 = product of:
      0.0059183068 = sum of:
        0.0059183068 = product of:
          0.0118366135 = sum of:
            0.0118366135 = weight(_text_:of in 1139) [ClassicSimilarity], result of:
              0.0118366135 = score(doc=1139,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17277241 = fieldWeight in 1139, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
  10. Zarrad, R.; Doggaz, N.; Zagrouba, E.: Wikipedia HTML structure analysis for ontology construction (2018) 0.00
    0.001972769 = product of:
      0.0059183068 = sum of:
        0.0059183068 = product of:
          0.0118366135 = sum of:
            0.0118366135 = weight(_text_:of in 4302) [ClassicSimilarity], result of:
              0.0118366135 = score(doc=4302,freq=8.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17277241 = fieldWeight in 4302, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4302)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Previously, the main problem of information extraction was to gather enough data. Today, the challenge is not to collect data but to interpret and represent them in order to deduce information. Ontologies are considered suitable solutions for organizing information. The classic methods for ontology construction from textual documents rely on natural language analysis and are generally based on statistical or linguistic approaches. However, these approaches do not consider the document structure which provides additional knowledge. In fact, the structural organization of documents also conveys meaning. In this context, new approaches focus on document structure analysis to extract knowledge. This paper describes a methodology for ontology construction from web data and especially from Wikipedia articles. It focuses mainly on document structure in order to extract the main concepts and their relations. The proposed methods extract not only taxonomic and non-taxonomic relations but also give the labels describing non-taxonomic relations. The extraction of non-taxonomic relations is established by analyzing the titles hierarchy in each document. A pattern matching is also applied in order to extract known semantic relations. We propose also to apply a refinement to the extracted relations in order to keep only those that are relevant. The refinement process is performed by applying the transitive property, checking the nature of the relations and analyzing taxonomic relations having inverted arguments. Experiments have been performed on French Wikipedia articles related to the medical field. Ontology evaluation is performed by comparing it to gold standards.
  11. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.00
    0.001932911 = product of:
      0.005798733 = sum of:
        0.005798733 = product of:
          0.011597466 = sum of:
            0.011597466 = weight(_text_:of in 311) [ClassicSimilarity], result of:
              0.011597466 = score(doc=311,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.16928169 = fieldWeight in 311, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.03125 = fieldNorm(doc=311)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
  12. Hjoerland, B.; Nicolaisen, J.: Scientific and scholarly classifications are not "naïve" : a comment to Begthol (2003) (2004) 0.00
    0.0017084682 = product of:
      0.0051254043 = sum of:
        0.0051254043 = product of:
          0.010250809 = sum of:
            0.010250809 = weight(_text_:of in 3023) [ClassicSimilarity], result of:
              0.010250809 = score(doc=3023,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.1496253 = fieldWeight in 3023, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3023)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Relationships between Knowledge Organization in LIS and Scientific & Scholarly Classifications In her paper "Classification for Information Retrieval and Classification for Knowledge Discovery: Relationships between 'Professional' and 'Naive' Classifications" (KO v30, no.2, 2003), Beghtol outlines how Scholarly activities and research lead to classification systems which subsequently are disseminated in publications which are classified in information retrieval systems, retrieved by the users and again used in Scholarly activities and so on. We think this model is correct and that its point is important. What we are reacting to is the fact that Beghtol describes the Classifications developed by scholars as "naive" while she describes the Classifications developed by librarians and information scientists as "professional." We fear that this unfortunate terminology is rooted in deeply ar chored misjudgments about the relationships between scientific and Scholarly classification an the one side and LIS Classifications an the other. Only a correction of this misjudgment may give us in the field of knowledge organization a Chance to do a job that is not totally disrespected and disregarded by the rest of the intellectual world.
  13. Mai, J.-E.: Classification in context : Relativity, reality, and representation (2004) 0.00
    0.0015782153 = product of:
      0.0047346456 = sum of:
        0.0047346456 = product of:
          0.009469291 = sum of:
            0.009469291 = weight(_text_:of in 3017) [ClassicSimilarity], result of:
              0.009469291 = score(doc=3017,freq=2.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.13821793 = fieldWeight in 3017, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3017)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper surveys classification research literature, discusses various classification theories, and shows that the focus has traditionally been an establishing a scientific foundation for classification research. This paper argues that a shift has taken place, and suggests that contemporary classification research focus an contextual information as the guide for the design and construction of classification schemes.

Authors

Languages

Types

  • a 206
  • m 20
  • el 10
  • s 4
  • b 2
  • More… Less…