Search (18 results, page 1 of 1)

  • × theme_ss:"Literaturübersicht"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Oppenheim, C.; Morris, A.; McKnight, C.: ¬The evaluation of WWW search engines (2000) 0.04
    0.03832564 = product of:
      0.15330257 = sum of:
        0.15330257 = weight(_text_:engines in 4546) [ClassicSimilarity], result of:
          0.15330257 = score(doc=4546,freq=8.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.67362815 = fieldWeight in 4546, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.046875 = fieldNorm(doc=4546)
      0.25 = coord(1/4)
    
    Abstract
    The literature of the evaluation of Internet search engines is reviewed. Although there have been many studies, there has been little consistency in the way such studies have been carried out. This problem is exacerbated by the fact that recall is virtually impossible to calculate in the fast changing Internet environment, and therefore the traditional Cranfield type of evaluation is not usually possible. A variety of alternative evaluation methods has been suggested to overcome this difficulty. The authors recommend that a standardised set of tools is developed for the evaluation of web search engines so that, in future, comparisons can be made between search engines more effectively, and that variations in performance of any given search engine over time can be tracked. The paper itself does not provide such a standard set of tools, but it investigates the issues and makes preliminary recommendations of the types of tools needed
  2. Bar-Ilan, J.: ¬The use of Web search engines in information science research (2003) 0.03
    0.03319098 = product of:
      0.13276392 = sum of:
        0.13276392 = weight(_text_:engines in 4271) [ClassicSimilarity], result of:
          0.13276392 = score(doc=4271,freq=6.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.58337915 = fieldWeight in 4271, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.046875 = fieldNorm(doc=4271)
      0.25 = coord(1/4)
    
    Abstract
    The World Wide Web was created in 1989, but it has already become a major information channel and source, influencing our everyday lives, commercial transactions, and scientific communication, to mention just a few areas. The seventeenth-century philosopher Descartes proclaimed, "I think, therefore I am" (cogito, ergo sum). Today the Web is such an integral part of our lives that we could rephrase Descartes' statement as "I have a Web presence, therefore I am." Because many people, companies, and organizations take this notion seriously, in addition to more substantial reasons for publishing information an the Web, the number of Web pages is in the billions and growing constantly. However, it is not sufficient to have a Web presence; tools that enable users to locate Web pages are needed as well. The major tools for discovering and locating information an the Web are search engines. This review discusses the use of Web search engines in information science research. Before going into detail, we should define the terms "information science," "Web search engine," and "use" in the context of this review.
  3. Rasmussen, E.M.: Indexing and retrieval for the Web (2002) 0.02
    0.019361407 = product of:
      0.077445626 = sum of:
        0.077445626 = weight(_text_:engines in 4285) [ClassicSimilarity], result of:
          0.077445626 = score(doc=4285,freq=6.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.34030452 = fieldWeight in 4285, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
      0.25 = coord(1/4)
    
    Abstract
    Techniques for automated indexing and information retrieval (IR) have been developed, tested, and refined over the past 40 years, and are well documented (see, for example, Agosti & Smeaton, 1996; BaezaYates & Ribeiro-Neto, 1999a; Frakes & Baeza-Yates, 1992; Korfhage, 1997; Salton, 1989; Witten, Moffat, & Bell, 1999). With the introduction of the Web, and the capability to index and retrieve via search engines, these techniques have been extended to a new environment. They have been adopted, altered, and in some Gases extended to include new methods. "In short, search engines are indispensable for searching the Web, they employ a variety of relatively advanced IR techniques, and there are some peculiar aspects of search engines that make searching the Web different than more conventional information retrieval" (Gordon & Pathak, 1999, p. 145). The environment for information retrieval an the World Wide Web differs from that of "conventional" information retrieval in a number of fundamental ways. The collection is very large and changes continuously, with pages being added, deleted, and altered. Wide variability between the size, structure, focus, quality, and usefulness of documents makes Web documents much more heterogeneous than a typical electronic document collection. The wide variety of document types includes images, video, audio, and scripts, as well as many different document languages. Duplication of documents and sites is common. Documents are interconnected through networks of hyperlinks. Because of the size and dynamic nature of the Web, preprocessing all documents requires considerable resources and is often not feasible, certainly not an the frequent basis required to ensure currency. Query length is usually much shorter than in other environments-only a few words-and user behavior differs from that in other environments. These differences make the Web a novel environment for information retrieval (Baeza-Yates & Ribeiro-Neto, 1999b; Bharat & Henzinger, 1998; Huang, 2000).
  4. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.02
    0.015969018 = product of:
      0.06387607 = sum of:
        0.06387607 = weight(_text_:engines in 4279) [ClassicSimilarity], result of:
          0.06387607 = score(doc=4279,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.2806784 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  5. Legg, C.: Ontologies on the Semantic Web (2007) 0.01
    0.012775214 = product of:
      0.051100858 = sum of:
        0.051100858 = weight(_text_:engines in 1979) [ClassicSimilarity], result of:
          0.051100858 = score(doc=1979,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.22454272 = fieldWeight in 1979, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
      0.25 = coord(1/4)
    
    Abstract
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The "Semantic Web" is touted by its developers as equally revolutionary, although it has not yet achieved anything like the Web's exponential uptake. It seeks to transcend a current limitation of the Web - that it largely requires indexing to be accomplished merely on specific character strings. Thus, a person searching for information about "turkey" (the bird) receives from current search engines many irrelevant pages about "Turkey" (the country) and nothing about the Spanish "pavo" even if he or she is a Spanish-speaker able to understand such pages. The Semantic Web vision is to develop technology to facilitate retrieval of information via meanings, not just spellings. For this to be possible, most commentators believe, Semantic Web applications will have to draw on some kind of shared, structured, machine-readable conceptual scheme. Thus, there has been a convergence between the Semantic Web research community and an older tradition with roots in classical Artificial Intelligence (AI) research (sometimes referred to as "knowledge representation") whose goal is to develop a formal ontology. A formal ontology is a machine-readable theory of the most fundamental concepts or "categories" required in order to understand information pertaining to any knowledge domain. A review of the attempts that have been made to realize this goal provides an opportunity to reflect in interestingly concrete ways on various research questions such as the following: - How explicit a machine-understandable theory of meaning is it possible or practical to construct? - How universal a machine-understandable theory of meaning is it possible or practical to construct? - How much (and what kind of) inference support is required to realize a machine-understandable theory of meaning? - What is it for a theory of meaning to be machine-understandable anyway?
  6. Enser, P.G.B.: Visual image retrieval (2008) 0.01
    0.012137249 = product of:
      0.048548996 = sum of:
        0.048548996 = product of:
          0.09709799 = sum of:
            0.09709799 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.09709799 = score(doc=3281,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2012 13:01:26
  7. Morris, S.A.: Mapping research specialties (2008) 0.01
    0.012137249 = product of:
      0.048548996 = sum of:
        0.048548996 = product of:
          0.09709799 = sum of:
            0.09709799 = weight(_text_:22 in 3962) [ClassicSimilarity], result of:
              0.09709799 = score(doc=3962,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.61904186 = fieldWeight in 3962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3962)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 9:30:22
  8. Fallis, D.: Social epistemology and information science (2006) 0.01
    0.012137249 = product of:
      0.048548996 = sum of:
        0.048548996 = product of:
          0.09709799 = sum of:
            0.09709799 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.09709799 = score(doc=4368,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 19:22:28
  9. Nicolaisen, J.: Citation analysis (2007) 0.01
    0.012137249 = product of:
      0.048548996 = sum of:
        0.048548996 = product of:
          0.09709799 = sum of:
            0.09709799 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.09709799 = score(doc=6091,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 19:53:22
  10. Zhu, B.; Chen, H.: Information visualization (2004) 0.01
    0.011178312 = product of:
      0.044713248 = sum of:
        0.044713248 = weight(_text_:engines in 4276) [ClassicSimilarity], result of:
          0.044713248 = score(doc=4276,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.19647488 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.25 = coord(1/4)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
  11. Dumais, S.T.: Latent semantic analysis (2003) 0.01
    0.00958141 = product of:
      0.03832564 = sum of:
        0.03832564 = weight(_text_:engines in 2462) [ClassicSimilarity], result of:
          0.03832564 = score(doc=2462,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.16840704 = fieldWeight in 2462, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2462)
      0.25 = coord(1/4)
    
    Abstract
    Latent Semantic Analysis (LSA) was first introduced in Dumais, Furnas, Landauer, and Deerwester (1988) and Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) as a technique for improving information retrieval. The key insight in LSA was to reduce the dimensionality of the information retrieval problem. Most approaches to retrieving information depend an a lexical match between words in the user's query and those in documents. Indeed, this lexical matching is the way that the popular Web and enterprise search engines work. Such systems are, however, far from ideal. We are all aware of the tremendous amount of irrelevant information that is retrieved when searching. We also fail to find much of the existing relevant material. LSA was designed to address these retrieval problems, using dimension reduction techniques. Fundamental characteristics of human word usage underlie these retrieval failures. People use a wide variety of words to describe the same object or concept (synonymy). Furnas, Landauer, Gomez, and Dumais (1987) showed that people generate the same keyword to describe well-known objects only 20 percent of the time. Poor agreement was also observed in studies of inter-indexer consistency (e.g., Chan, 1989; Tarr & Borko, 1974) in the generation of search terms (e.g., Fidel, 1985; Bates, 1986), and in the generation of hypertext links (Furner, Ellis, & Willett, 1999). Because searchers and authors often use different words, relevant materials are missed. Someone looking for documents an "human-computer interaction" will not find articles that use only the phrase "man-machine studies" or "human factors." People also use the same word to refer to different things (polysemy). Words like "saturn," "jaguar," or "chip" have several different meanings. A short query like "saturn" will thus return many irrelevant documents. The query "Saturn Gar" will return fewer irrelevant items, but it will miss some documents that use only the terms "Saturn automobile." In searching, there is a constant tension between being overly specific and missing relevant information, and being more general and returning irrelevant information.
  12. Kim, K.-S.: Recent work in cataloging and classification, 2000-2002 (2003) 0.01
    0.0060686246 = product of:
      0.024274498 = sum of:
        0.024274498 = product of:
          0.048548996 = sum of:
            0.048548996 = weight(_text_:22 in 152) [ClassicSimilarity], result of:
              0.048548996 = score(doc=152,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.30952093 = fieldWeight in 152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=152)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  13. El-Sherbini, M.A.: Cataloging and classification : review of the literature 2005-06 (2008) 0.01
    0.0060686246 = product of:
      0.024274498 = sum of:
        0.024274498 = product of:
          0.048548996 = sum of:
            0.048548996 = weight(_text_:22 in 249) [ClassicSimilarity], result of:
              0.048548996 = score(doc=249,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.30952093 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  14. Miksa, S.D.: ¬The challenges of change : a review of cataloging and classification literature, 2003-2004 (2007) 0.01
    0.0060686246 = product of:
      0.024274498 = sum of:
        0.024274498 = product of:
          0.048548996 = sum of:
            0.048548996 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.048548996 = score(doc=266,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.30952093 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  15. Nielsen, M.L.: Thesaurus construction : key issues and selected readings (2004) 0.01
    0.0053100465 = product of:
      0.021240186 = sum of:
        0.021240186 = product of:
          0.042480372 = sum of:
            0.042480372 = weight(_text_:22 in 5006) [ClassicSimilarity], result of:
              0.042480372 = score(doc=5006,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.2708308 = fieldWeight in 5006, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5006)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    18. 5.2006 20:06:22
  16. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.01
    0.0053100465 = product of:
      0.021240186 = sum of:
        0.021240186 = product of:
          0.042480372 = sum of:
            0.042480372 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
              0.042480372 = score(doc=6084,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.2708308 = fieldWeight in 6084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6084)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  17. Genereux, C.: Building connections : a review of the serials literature 2004 through 2005 (2007) 0.00
    0.0045514684 = product of:
      0.018205874 = sum of:
        0.018205874 = product of:
          0.036411747 = sum of:
            0.036411747 = weight(_text_:22 in 2548) [ClassicSimilarity], result of:
              0.036411747 = score(doc=2548,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.23214069 = fieldWeight in 2548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2548)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22
  18. Corbett, L.E.: Serials: review of the literature 2000-2003 (2006) 0.00
    0.0037928906 = product of:
      0.015171562 = sum of:
        0.015171562 = product of:
          0.030343125 = sum of:
            0.030343125 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.030343125 = score(doc=1088,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.19345059 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 9.2000 17:38:22